Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/asa/journal/jasa/138/6/10.1121/1.4937607
1.
1. Anderson, C. I. H. , Horne, J. K. , and Boyle, J. (2007). “ Classifying multi-frequency fisheries acoustics data using a robust probabilistic classification technique,” J. Acoust. Soc. Am. 121, EL230EL237.
http://dx.doi.org/10.1121/1.2731016
2.
2. Anderson, V. C. (1950). “ Sound scattering from a fluid sphere,” J. Acoust. Soc. Am. 22, 426431.
http://dx.doi.org/10.1121/1.1906621
3.
3. Berenger, J. P. (1996). “ Three-dimensional perfectly matched layer for the absorption of electromagnetic waves,” J. Comp. Phys. 127, 363379.
http://dx.doi.org/10.1006/jcph.1996.0181
4.
4. Bonnet, M. (1995). Boundary Integral Equation Methods for Solids and Fluids ( John Wiley and Sons, Chichester, UK), 203 pp.
5.
5. Burton, A. J. , and Miller, G. F. (1971). “ The application of integral equation methods to the numerical solutions of some exterior boundary problems,” Proc. R. Soc. London Ser. A 323, 201210.
http://dx.doi.org/10.1098/rspa.1971.0097
6.
6. Chapman, R. (2006). “ A sea water equation of state calculator,” http://fermi.jhuapl.edu/denscalc.html (Last viewed 12/10/2015).
7.
7. Chen, C.-T. , and Millero, F. J. (1977). “ Speed of sound in seawater at high pressures,” J. Acoust. Soc. Am. 62, 11291135.
http://dx.doi.org/10.1121/1.381646
8.
8. Chen, L. H. , and Scheikert, D. G. (1963). “ Sound radiation from an arbitrary body,” J. Acoust. Soc. Am. 35, 16261632.
http://dx.doi.org/10.1121/1.1918770
9.
9. Chertock, G. (1964). “ Sound radiation from vibrating surfaces,” J. Acoust. Soc. Am. 36, 13051313.
http://dx.doi.org/10.1121/1.1919203
10.
10. Chu, D. , Foote, K. G. , and Stanton, T. K. (1993). “ Further analysis of target strength measurements of Antarctic krill at 38 and 120 kHz: Comparison with deformed cylinder model and inference of orientation distribution,” J. Acoust. Soc. Am. 93, 29852988.
http://dx.doi.org/10.1121/1.405818
11.
11. Clay, C. S. (1991). “ Low-resolution acoustic scattering models: Fluid-filled cylinders and fish with swim bladders,” J. Acoust. Soc. Am. 89, 21682179.
http://dx.doi.org/10.1121/1.400910
12.
12. Clay, C. S. (1992). “ Composite ray-mode approximations for backscattered sound from gas-filled cylinders and swimbladders,” J. Acoust. Soc. Am. 92, 21732180.
http://dx.doi.org/10.1121/1.405211
13.
13. Clay, C. S. , and Horne, J. K. (1994). “ Acoustic models of fish: The Atlantic cod (Gadus morhua),” J. Acoust. Soc. Am. 96, 16611668.
http://dx.doi.org/10.1121/1.410245
14.
14.COMSOL (2008). COMSOL Multiphysics. Acoustics Module User's Guide ( COMSOL, Burlington, MA), 270 p.
15.
15. Conti, S. G. , and Demer, D. A. (2006). “ Improved parameterization of the SDWBA krill TS model,” ICES J. Mar. Sci. 63, 928935.
http://dx.doi.org/10.1016/j.icesjms.2006.02.007
16.
16. Copley, L. G. (1967). “ Integral equation method for radiation from vibrating bodies,” J. Acoust. Soc. Am. 41, 807816.
http://dx.doi.org/10.1121/1.1910410
17.
17. Copley, L. G. (1968). “ Fundamental results concerning integral representation in acoustic radiation,” J. Acoust. Soc. Am. 44, 2832.
http://dx.doi.org/10.1121/1.1911072
18.
18. Demer, D. A. , and Conti, S. (2003). “ Reconciling theoretical versus empirical target strengths of krill: Effects of phase variability on the distorted-wave Born approximation,” ICES J. Mar. Sci. 60, 429434.
http://dx.doi.org/10.1016/S1054-3139(03)00002-X
19.
19. Demer, D. A. , and Conti, S. (2004). “ Erratum: Reconciling theoretical versus empirical target strengths of krill; effects of phase variability on the distorted-wave, Born approximation,” ICES J. Mar. Sci. 61, 157158.
http://dx.doi.org/10.1016/j.icesjms.2003.12.003
20.
20. De Robertis, A. , McKelvey, D. R. , and Ressler, P. H. (2010). “ Development and application of an empirical multifrequency method for backscatter classification,” Can. J. Fish. Aquat. Sci. 67, 14591474.
http://dx.doi.org/10.1139/F10-075
21.
21. Flammer, C. (1957). Spheroidal Wave Functions ( Stanford University Press, Stanford, CA), pp. 632.
22.
22. Fofonoff, P. , and Millard, R. C. , Jr. (1983). “ Algorithms for computation of fundamental properties of seawater,” UNESCO Tech. Pap. Mar. Sci. 44, 53.
23.
23. Foote, K. G. (1983). “ Maintaining precision calibrations with optimal copper spheres,” J. Acoust. Soc. Am. 73, 10541063.
http://dx.doi.org/10.1121/1.389153
24.
24. Foote, K. G. (1985). “ Rather-high-frequency sound scattering by swimbladdered fish,” J. Acoust. Soc. Am. 78, 688700.
http://dx.doi.org/10.1121/1.392438
25.
25. Foote, K. G. , and Francis, D. T. I. (2002). “ Comparing Kirchhoff-approximation and boundary-element models for computing gadoid target strengths,” J. Acoust. Soc. Am 111, 16441654.
http://dx.doi.org/10.1121/1.1458939
26.
26. Francis, D. T. I. (1993). “ A gradient formulation of the Helmholtz integral equation for acoustic radiation and scattering,” J. Acoust. Soc. Am. 93, 17001709.
http://dx.doi.org/10.1121/1.406735
27.
27. Francis, D. T. I. , and Foote, K. G. (2003). “ Depth-dependent target strengths of gadoids by the boundary-element method,” J. Acoust. Soc. Am 114, 31363146.
http://dx.doi.org/10.1121/1.1619982
28.
28. Furusawa, M. (1988). “ Prolate spheroidal models for predicting general trends of fish target strength,” J. Acoust. Soc. Jpn. (E) 9, 1314.
http://dx.doi.org/10.1250/ast.9.13
29.
29. Haslett, R. W. G. (1965). “ Acoustic backscattering cross sections of fish at three frequencies and their representation on a universal graph,” Br. J. Appl. Phys. 16, 11431150.
http://dx.doi.org/10.1088/0508-3443/16/8/313
30.
30. Henderson, M. J. , and Horne, J. K. (2007). “ Comparison of in situ, ex situ, and backscatter model estimates of Pacific hake (Merluccius productus) target strength,” Can. J. Fish. Aquat. Sci. 64, 17811794.
http://dx.doi.org/10.1139/f07-134
31.
31. Holliday, D. V. (1972). “ Resonance structure in echoes from schooled pelagic fish,” J. Acoust. Soc. Am. 51, 13221331.
http://dx.doi.org/10.1121/1.1912978
32.
32. Horne, J. K. (2008). “ Acoustic ontogeny of a teleost,” J. Fish. Biol. 73, 14441463.
http://dx.doi.org/10.1111/j.1095-8649.2008.02024.x
33.
33. Ihlenburg, F. (1998). Finite Element Analysis of Acoustic Scattering, Applied Mathematical Sciences ( Springer-Verlag, New York), Vol. 132, 182 pp.
34.
34. Jech, J. M. , and Horne, J. K. (1998). “ Sensitivity of Acoustic Scattering Models to Fish Morphometry,” in Proceedings 16th International Congress on Acoustics and 135th Meeting Acoustical Society of America, 20–26 June 1998, Seattle, WA, USA, ed. P. K. Kuhl and L. A. Crum ( Acoustical Society of America, Melville, NY), Vol. 3, pp. 18191820.
35.
35. Jech, J. M. , Schael, D. M. , and Clay, C. S. (1995). “ Application of three sound scattering models to threadfin shad (Dorosoma petenense),” J. Acoust. Soc. Am. 98, 22622269.
http://dx.doi.org/10.1121/1.413340
36.
36. Jones, B. A. , Lavery, A. C. , and Stanton, T. K. (2009). “ Use of the distorted wave Born approximation to predict scattering by inhomogeneous objects: Application to squid,” J. Acoust. Soc. Am. 125, 7388.
http://dx.doi.org/10.1121/1.3021298
37.
37. Kloser, R. J. , and Horne, J. K. (2003). “ Characterizing uncertainty in target-strength measurements of a deepwater fish: Orange roughy (Hoplostethus atlanticus),” ICES J. Mar Sci 60, 516523.
http://dx.doi.org/10.1016/S1054-3139(03)00048-1
38.
38. Lavery, A. C. , Stanton, T. K. , McGehee, D. E. , and Chu, D. (2002). “ Three-dimensional modeling of acoustic backscattering from fluid-like zooplankton,” J. Acoust. Soc. Am. 111, 11971210.
http://dx.doi.org/10.1121/1.1433813
39.
39. Lavery, A. C. , Wiebe, P. H. , Stanton, T. K. , Lawson, G. L. , Benfield, M. C. , and Copley, N. (2007). “ Determining dominant scatterers of sound in mixed zooplankton populations,” J. Acoust. Soc. Am. 122, 33043326.
http://dx.doi.org/10.1121/1.2793613
40.
40. Lee, W. , Lavery, A. C. , and Stanton, T. K. (2012). “ Orientation dependence of broadband acoustic backscattering from live squid,” J. Acoust. Soc. Am. 131, 44614475.
http://dx.doi.org/10.1121/1.3701876
41.
41. Macaulay, G. J. , Peña, H. , Fässler, S. M. M. , Pedersen, G. , and Ona, E. (2013). “ Accuracy of the Kirchhoff-approximation and Kirchhoff-ray-mode fish swimbladder scattering models,” PLoS ONE 8, e64055.
http://dx.doi.org/10.1371/journal.pone.0064055
42.
42. McClatchie, S. , Alsop, J. , Ye, Z. , and Coombs, R. F. (1996). “ Consequence of swimbladder model choice and fish orientation to target strength of three New Zealand fish species,” ICES J. Mar. Sci. 53, 847862.
http://dx.doi.org/10.1006/jmsc.1996.0106
43.
44. Medwin, H. , and Clay, C. S. (1998). Fundamentals of Acoustical Oceanography ( Academic Press, New York), pp. 234286.
44.
45. Midttun, L. (1984). “ Fish and other organisms as acoustic targets,” Rapp. Réun. Cons. Int. Explor. Mer. 184, 2533.
45.
46. Morse, P. M. , and Ingard, U. (1968). Theoretical Acoustics ( McGraw-Hill, New York), pp. 400422.
46.
47. Okumura, T. , Masuya, R. , Takao, Y. , and Sawada, K. (2003). “ An application of the boundary element method to acoustic scattering of marine organism,” J. Mar. Acoust. Soc. Jpn. 30, 206213.
http://dx.doi.org/10.3135/jmasj.30.206
47.
48. Partridge, C. , and Smith, E. R. (1995). “ Acoustic scattering from bodies: Range of validity of the deformed cylinder method,” J. Acoust. Soc. Am. 97, 784795.
http://dx.doi.org/10.1121/1.412943
48.
49. Pierce, A. D. (1989). Acoustics: An Introduction to Its Physical Principles and Applications, 2nd ed. ( Acoustical Society of America, Melville, New York), 180183.
49.
50. Pierce, A. D. (1992). “ Variational formulations in acoustic radiation and scattering,” in Underwater Scattering and Radiation, edited by A. D. Pierce and R. N. Thurston ( Academic, San Diego, CA), pp. 195371.
50.
51. Rayleigh, J. W. S. (1945). The Theory of Sound ( Dover Publications, New York), Vol. II, 272 pp.
51.
52. Reeder, D. B. , Jech, J. M. , and Stanton, T. K. (2004). “ Broadband acoustic backscatter and high-resolution morphology of fish: Measurement and modeling,” J. Acoust. Soc. Am. 116, 747761.
http://dx.doi.org/10.1121/1.1648318
52.
53. Reeder, D. B. , and Stanton, T. K. (2004). “ Acoustic scattering by axisymmetric finite-length bodies: An extension of a two-dimensional conformal mapping method,” J. Acoust. Soc. Am. 116, 729746.
http://dx.doi.org/10.1121/1.1648681
53.
54. Sawada, K. , Miyanohana, Y. , and Ishii, K. (1997). “ Precise target strength pattern measurement in an indoor tank,” J. Acoust. Soc. Jpn. 18, 231238.
http://dx.doi.org/10.1250/ast.18.231
54.
55. Senior, T. B. (1960). “ Scalar diffraction by a prolate spheroid at low frequencies,” Can. J. Phys. 38, 16321641.
http://dx.doi.org/10.1139/p60-166
55.
56. Silbiger, A. (1963). “ Scattering of sound by an elastic prolate spheroid,” J. Acoust. Soc. Am. 35, 564570.
http://dx.doi.org/10.1121/1.1918533
56.
57. Skudrzyk, E. (1971). The Foundations of Acoustics ( Springer, New York), pp. 455465.
57.
58. Spence, R. D. , and Granger, S. (1951). “ The scattering of sound from a prolate spheroid,” J. Acoust. Soc. Am. 23, 701706.
http://dx.doi.org/10.1121/1.1906827
58.
59. Stanton, T. K. (1988). “ Sound scattering by cylinders of finite length. I. Fluid cylinders,” J. Acoust. Soc. Am. 83, 5563.
http://dx.doi.org/10.1121/1.396184
59.
60. Stanton, T. K. (1989). “ Sound scattering by cylinders of finite length. III. Deformed cylinders,” J. Acoust. Soc. Am. 86, 691705.
http://dx.doi.org/10.1121/1.398193
60.
61. Stanton, T. K. (1992). “ Sound scattering by rough elongated elastic objects. I. Means of scattered field,” J. Acoust. Soc. Am. 92, 16411664.
http://dx.doi.org/10.1121/1.403905
61.
62. Stanton, T. K. , and Chu, D. (2000). “ Review and recommendations for the modeling of acoustic scattering by fluid-like elongated zooplankton: Euphausiids and copepods,” ICES J. Mar. Sci. 57, 793807.
http://dx.doi.org/10.1006/jmsc.1999.0517
62.
63. Stanton, T. K. , Chu, D. , and Wiebe, P. H. (1998). “ Sound scattering by several zooplankton groups II: Scattering models,” J. Acoust. Soc. Am. 103, 236253.
http://dx.doi.org/10.1121/1.421110
63.
64. Stanton, T. K. , Chu, D. , Wiebe, P. H. , and Clay, C. S. (1993). “ Average echoes from randomly oriented random-length finite cylinders: Zooplankton models,” J. Acoust. Soc. Am. 94, 34633472.
http://dx.doi.org/10.1121/1.407200
64.
65. Tomczak, M. (2000). “ Sound speed calculator,” http://www.es.flinders.edu.au/~mattom/Utilities/soundspeed.html (Last viewed 12/10/2015).
65.
66. Woillez, M. , Ressler, P. H. , Wilson, C. D. , and Horne, J. K. (2012). “ Multifrequency species classification of acoustic-trawl survey data using semi-supervised learning with class discovery,” J. Acoust. Soc. Am. 131, EL184EL190.
http://dx.doi.org/10.1121/1.3678685
66.
67. Ye, Z. (1997). “ A novel approach to sound scattering by cylinders of finite length,” J. Acoust. Soc. Am. 102, 877844.
http://dx.doi.org/10.1121/1.419910
67.
68. Ye, Z. , Hoskinson, E. , Dewey, R. , Ding, L. , and Farmer, D. M. (1997). “ A method for acoustic scattering by slender bodies. I. Theory and verification,” J. Acoust. Soc. Am. 102, 19641976.
http://dx.doi.org/10.1121/1.419650
68.
69. Yeh, C. (1967). “ Scattering of acoustic waves by a penetrable prolate spheroid. I. Liquid prolate spheroid,” J. Acoust. Soc. Am. 42, 518521.
http://dx.doi.org/10.1121/1.1910614
69.
70. Zampolli, M. , Jensen, F. B. , and Tesei, A. (2009). “ Benchmark problems for acoustic scattering from elastic objects in the free field and near the seafloor,” J. Acoust. Soc. Am. 125, 8998.
http://dx.doi.org/10.1121/1.3027446
70.
71. Zampolli, M. , Tesei, A. , Jensen, F. , Malm, N. , and Blottman, J. III (2007). “ A computationally efficient finite element model with perfectly matched layers applied to scattering from axially symmetric objects,” J. Acoust. Soc. Am. 122, 14721485.
http://dx.doi.org/10.1121/1.2764471
71.
72. Zienkiewicz, O. C. , and Taylor, R. L. (1989). The Finite Element Method, 4th ed. ( McGraw-Hill, London, UK), Vol. 1, pp. 121132.
http://aip.metastore.ingenta.com/content/asa/journal/jasa/138/6/10.1121/1.4937607
Loading
/content/asa/journal/jasa/138/6/10.1121/1.4937607
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/asa/journal/jasa/138/6/10.1121/1.4937607
2015-12-21
2016-12-06

Abstract

Analytical and numerical scatteringmodels with accompanying digital representations are used increasingly to predict acoustic backscatter by fish and zooplankton in research and ecosystem monitoring applications. Ten such models were applied to targets with simple geometric shapes and parameterized (e.g., size and material properties) to represent biological organisms such as zooplankton and fish, and their predictions of acoustic backscatter were compared to those from exact or approximate analytical models, i.e., benchmarks. These comparisons were made for a sphere, spherical shell, prolate spheroid, and finite cylinder, each with homogeneous composition. For each shape, four target boundary conditions were considered: rigid-fixed, pressure-release, gas-filled, and weakly scattering. Target strength (dB re 1 m2) was calculated as a function of insonifying frequency ( = 12 to 400 kHz) and angle of incidence (θ = 0° to 90°). In general, the numerical models (i.e., boundary- and finite-element) matched the benchmarks over the full range of simulation parameters. While inherent errors associated with the approximate analytical models were illustrated, so were the advantages as they are computationally efficient and in certain cases, outperformed the numerical models under conditions where the numerical models did not converge.

Loading

Full text loading...

/deliver/fulltext/asa/journal/jasa/138/6/1.4937607.html;jsessionid=tcG89mLKTEPkuYck0NMlNNp6.x-aip-live-02?itemId=/content/asa/journal/jasa/138/6/10.1121/1.4937607&mimeType=html&fmt=ahah&containerItemId=content/asa/journal/jasa
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=asadl.org/jasa/138/6/10.1121/1.4937607&pageURL=http://scitation.aip.org/content/asa/journal/jasa/138/6/10.1121/1.4937607'
Right1,Right2,Right3,