Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/asa/journal/jasa/138/6/10.1121/1.4937745
1.
1. E. Mach, “ Uber den Verlauf Von Funkenwellen in der Ebene und im Raume,” Sitzungsbr. Akad. Wiss. Wein 78, 819838 (1878).
2.
2. J. von Neumann, “ Oblique reflection of shocks,” in John von Neumann Collected Works, edited by A. H. Taub ( MacMillan, New York, 1963), Vol. 6, pp. 238299.
3.
3. G. Ben-Dor, Shock Wave Reflection Phenomena ( Springer Verlag, New York, 2007), pp. 34 and 297–303.
4.
4. P. Colella and L. F. Henderson, “ The von Neumann paradox for the diffraction of weak shock waves,” J. Fluid Mech. 213, 7194 (1990).
http://dx.doi.org/10.1017/S0022112090002221
5.
5. E. I. Vasiliev and A. N. Kraiko, “ Numerical simulation of weak shock diffraction over a wedge under the von Neumann paradox conditions,” Comput. Math. Phys. 39, 13351345 (1999).
6.
6. B. Skews and J. Ashworth, “ The physical nature of weak shock wave reflection,” J. Fluid Mech. 542, 105114 (2005).
http://dx.doi.org/10.1017/S0022112005006543
7.
7. A. N. Semenov, M. K. Berezkina, and I. V. Krassovskaya, “ Classification of pseudo-steady shock wave reflection types,” Shock Waves 22, 307316 (2012). For simplicity, the “Single Mach-Smith Reflections” as described in this reference are referred to as “Mach reflections” in this Letter.
http://dx.doi.org/10.1007/s00193-012-0373-z
8.
8. M. Geva, O. Ram, and O. Sardot, “ The non-stationary hysteresis phenomenon in shock wave reflections,” J. Fluid Mech. 732, R1R11 (2013).
http://dx.doi.org/10.1017/jfm.2013.423
9.
9. S. Baskar, F. Coulouvrat, and R. Marchiano, “ Nonlinear reflection of grazing acoustic shock waves: Unsteady transition from von Neumann to Mach to Snell-Descartes reflections,” J. Fluid Mech. 575, 2755 (2007).
http://dx.doi.org/10.1017/S0022112006003752
10.
10. M. M. Karzova, V. A. Khokhlova, E. Salze, S. Ollivier, and P. Blanc-Benon, “ Mach stem formation in reflection and focusing of weak shock acoustic pulses,” J. Acoust. Soc. Am. 137, EL436EL442 (2015).
http://dx.doi.org/10.1121/1.4921681
11.
11. C. E. Needham, Blast Waves ( Springer, New York, 2010), pp. 216217.
12.
12.ANSI S2.20-1983: American National Standard for Estimating Airblast Characteristics for Single Point Explosions in Air ( Acoustical Society of America, New York, 2006).
13.
13. M. B. Muhlestein, K. L. Gee, and J. H. Macedone, “ Educational demonstration of a spherically propagating acoustic shock,” J. Acoust. Soc. Am. 131, 24222430 (2012).
http://dx.doi.org/10.1121/1.3676730
14.
14. S. M. Young, K. L. Gee, T. B. Neilsen, and K. M. Leete, “ Outdoor measurements of spherical acoustic shock decay,” J. Acoust. Soc. Am. 138, EL305EL310 (2015).
http://dx.doi.org/10.1121/1.4929928
15.
15. R. A. Kafiatullin, S. A. Eremin, and E. V. Sagadeev, “ Calculation of heats of combustion of acetylene hydrocarbons,” Theoretical Found. Chem. Eng. 41, 221224 (2007).
http://dx.doi.org/10.1134/S0040579507020182
16.
16. Equation (1) was incorrectly typeset in Ref. 11; private correspondence with Dr. Needham gave the revised equation used here. For the purposes of this Letter the name of the variable was changed from to .
http://aip.metastore.ingenta.com/content/asa/journal/jasa/138/6/10.1121/1.4937745
Loading
/content/asa/journal/jasa/138/6/10.1121/1.4937745
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/asa/journal/jasa/138/6/10.1121/1.4937745
2015-12-17
2016-12-03

Abstract

Mach stem formation during outdoor acoustic shock propagation is investigated using spherical oxyacetylene balloons exploded above pavement. The location of the transition point from regular to irregular reflection and the path of the triple point are experimentally resolved using microphone arrays and a high-speed camera. The transition point falls between recent analytical work for weak irregular reflections and an empirical relationship derived from large explosions.

Loading

Full text loading...

/deliver/fulltext/asa/journal/jasa/138/6/1.4937745.html;jsessionid=Ualj1CBIrpp3yhx4PInBmx5c.x-aip-live-06?itemId=/content/asa/journal/jasa/138/6/10.1121/1.4937745&mimeType=html&fmt=ahah&containerItemId=content/asa/journal/jasa
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=asadl.org/jasa/138/6/10.1121/1.4937745&pageURL=http://scitation.aip.org/content/asa/journal/jasa/138/6/10.1121/1.4937745'
Right1,Right2,Right3,