Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/asa/journal/jasa/138/6/10.1121/1.4937754
1.
1. Aronoff, J. M. , Yoon, Y. S. , Freed, D. J. , Vermiglio, A. J. , Pal, I. , and Soli, S. D. (2010). “ The use of interaural time and level difference cues by bilateral cochlear implant users,” J. Acoust. Soc. Am. 127, EL87EL92.
http://dx.doi.org/10.1121/1.3298451
2.
2. Best, V. , Laback, B. , and Majdak, P. (2011). “ Binaural interference in bilateral cochlear-implant listeners,” J. Acoust. Soc. Am. 130, 29392950.
http://dx.doi.org/10.1121/1.3641400
3.
3. Churchill, T. , Kan, A. , Goupell, M. J. , and Litovsky, R. Y. (2014). “ Spatial hearing benefits demonstrated with presentation of acoustic temporal fine structure cues in bilateral cochlear implant listeners,” J. Acoust. Soc. Am. 136, 12461256.
http://dx.doi.org/10.1121/1.4892764
4.
4. Dye, R. H. , Jr. (1990). “ The combination of interaural information across frequencies: Lateralization on the basis of interaural delay,” J. Acoust. Soc. Am. 88, 21592170.
http://dx.doi.org/10.1121/1.400113
5.
5. Egger, K. , Majdak, P. , and Laback, B. (2015). “ Channel interaction and current level affect across-electrode integration of interaural time differences in bilateral cochlear-implant listeners,” J. Assoc. Res. Otolaryngol. 1–13, in press.
6.
6. Fitzgerald, M. B. , Kan, A. , and Goupell, M. J. (2015). “ Bilateral loudness balancing and distorted spatial perception in recipients of bilateral cochlear implants,” Ear Hear. 36(5), e225e236.
http://dx.doi.org/10.1097/AUD.0000000000000174
7.
7. Francart, T. , Lenssen, A. , Buchner, A. , Lenarz, T. , and Wouters, J. (2015). “ Effect of channel envelope synchrony on interaural time difference sensitivity in bilateral cochlear implant listeners,” Ear Hear. 36, e199e206.
http://dx.doi.org/10.1097/AUD.0000000000000152
8.
8. Goupell, M. J. , Kan, A. , and Litovsky, R. Y. (2013). “ Typical mapping procedures can produce non-centered auditory images in bilateral cochlear-implant users,” J. Acoust. Soc. Am. 133, EL101EL107.
http://dx.doi.org/10.1121/1.4776772
9.
9. Grantham, D. W. , Ashmead, D. H. , Ricketts, T. A. , Labadie, R. F. , and Haynes, D. S. (2007). “ Horizontal-plane localization of noise and speech signals by postlingually deafened adults fitted with bilateral cochlear implants,” Ear Hear. 28, 524541.
http://dx.doi.org/10.1097/AUD.0b013e31806dc21a
10.
10. Hochmair, I. , Nopp, P. , Jolly, C. , Schmidt, M. , Schosser, H. , Garnham, C. , and Anderson, I. (2006). “ MED-EL cochlear implants: State of the art and a glimpse into the future,” Trends Amplif. 10, 201219.
http://dx.doi.org/10.1177/1084713806296720
11.
11. Ihlefeld, A. , Kan, A. , and Litovsky, R. Y. (2014). “ Across-frequency combination of interaural time difference in bilateral cochlear implant listeners,” Front. Syst. Neurosci. 8, 22.
http://dx.doi.org/10.3389/fnsys.2014.00022
12.
12. Ihlefeld, A. , and Shinn-Cunningham, B. G. (2011). “ Effect of source spectrum on sound localization in an everyday reverberant room,” J. Acoust. Soc. Am. 130, 324333.
http://dx.doi.org/10.1121/1.3596476
13.
13. Jones, H. , Kan, A. , and Litovsky, R. Y. (2014). “ Comparing sound localization deficits in bilateral cochlear-implant users and vocoder simulations with normal-hearing listeners,” Trends Hear. 18, 2331216514554574.
http://dx.doi.org/10.1177/2331216514554574
14.
14. Kan, A. , and Litovsky, R. Y. (2015). “ Binaural hearing with electrical stimulation,” Hear. Res. 322, 127137.
http://dx.doi.org/10.1016/j.heares.2014.08.005
15.
15. Kan, A. , Litovsky, R. Y. , and Goupell, M. J. (2015). “ Effects of interaural pitch-matching and auditory image centering on binaural sensitivity in cochlear-implant users,” Ear. Hear. 36(3), 6268.
http://dx.doi.org/10.1097/AUD.0000000000000135
16.
15. Kan, A. , Stoelb, C. , Litovsky, R. Y. , and Goupell, M. J. (2013). “ Effect of mismatched place-of-stimulation on binaural fusion and lateralization in bilateral cochlear-implant users,” J. Acoust. Soc. Am. 134, 29232936.
http://dx.doi.org/10.1121/1.4820889
17.
16. Kerber, S. , and Seeber, B. U. (2012). “ Sound localization in noise by normal-hearing listeners and cochlear implant users,” Ear Hear. 33, 445457.
http://dx.doi.org/10.1097/AUD.0b013e318257607b
18.
17. Laback, B. , Egger, K. , and Majdak, P. (2015). “ Perception and coding of interaural time differences with bilateral cochlear implants,” Hear. Res. 322, 138150.
http://dx.doi.org/10.1016/j.heares.2014.10.004
19.
18. Laback, B. , and Majdak, P. (2008). “ Binaural jitter improves interaural time-difference sensitivity of cochlear implantees at high pulse rates,” Proc. Natl. Acad. Sci. U.S.A. 105, 814817.
http://dx.doi.org/10.1073/pnas.0709199105
20.
19. Laback, B. , Majdak, P. , and Baumgartner, W.-D. (2007). “ Lateralization discrimination of interaural time delays in four-pulse sequences in electric and acoustic hearing,” J. Acoust. Soc. Am. 121, 21822191.
http://dx.doi.org/10.1121/1.2642280
21.
20. Litovsky, R. Y. , Goupell, M. J. , Godar, S. , Grieco-Calub, T. , Jones, G. L. , Garadat, S. N. , Agrawal, S. , Kan, A. , Todd, A. , Hess, C. , and Misurelli, S. (2012). “ Studies on bilateral cochlear implants at the University of Wisconsin's Binaural Hearing and Speech Laboratory,” J. Am. Acad. Audiol. 23, 476494.
http://dx.doi.org/10.3766/jaaa.23.6.9
22.
21. Litovsky, R. Y. , Jones, G. L. , Agrawal, S. , and van Hoesel, R. (2010). “ Effect of age at onset of deafness on binaural sensitivity in electric hearing in humans,” J. Acoust. Soc. Am. 127, 400414.
http://dx.doi.org/10.1121/1.3257546
23.
22. Litovsky, R. Y. , Parkinson, A. , and Arcaroli, J. (2009). “ Spatial hearing and speech intelligibility in bilateral cochlear implant users,” Ear Hear. 30, 419431.
http://dx.doi.org/10.1097/AUD.0b013e3181a165be
24.
23. Loizou, P. C. , Dorman, M. F. , Tu, Z. , and Fitzke, J. (2000). “ Recognition of sentences in noise by normal-hearing listeners using simulations of speak-type cochlear implant signal processors,” Ann. Otol., Rhinol., Laryngol. Suppl. 185, 6768.
25.
24. Lu, T. , Litovsky, R. , and Zeng, F. G. (2011). “ Binaural unmasking with multiple adjacent masking electrodes in bilateral cochlear implant users,” J. Acoust. Soc. Am. 129, 39343945.
http://dx.doi.org/10.1121/1.3570948
26.
25. Macpherson, E. A. , and Middlebrooks, J. C. (2002). “ Listener weighting of cues for lateral angle: The duplex theory of sound localization revisited,” J. Acoust. Soc. Am. 111, 22192236.
http://dx.doi.org/10.1121/1.1471898
27.
26. Majdak, P. , Goupell, M. J. , and Laback, B. (2011). “ Two-dimensional localization of virtual sound sources in cochlear-implant listeners,” Ear Hear. 32, 198208.
http://dx.doi.org/10.1097/AUD.0b013e3181f4dfe9
28.
27. Pfingst, B. E. , Bowling, S. A. , Colesa, D. J. , Garadat, S. N. , Raphael, Y. , Shibata, S. B. , Strahl, S. B. , Su, G. L. , and Zhou, N. (2011). “ Cochlear infrastructure for electrical hearing,” Hear. Res. 281, 6573.
http://dx.doi.org/10.1016/j.heares.2011.05.002
29.
28. Poon, B. B. , Eddington, D. K. , Noel, V. , and Colburn, H. S. (2009). “ Sensitivity to interaural time difference with bilateral cochlear implants: Development over time and effect of interaural electrode spacing,” J. Acoust. Soc. Am. 126, 806815.
http://dx.doi.org/10.1121/1.3158821
30.
29. Rakerd, B. , and Hartmann, W. M. (2010). “ Localization of sound in rooms. V. Binaural coherence and human sensitivity to interaural time differences in noise,” J. Acoust. Soc. Am. 128, 30523063.
http://dx.doi.org/10.1121/1.3493447
31.
30. Robles, L. , and Ruggero, M. A. (2001). “ Mechanics of the mammalian cochlea,” Physiol. Rev. 81, 13051352.
32.
31. Smith, Z. M. , Delgutte, B. , and Oxenham, A. J. (2002). “ Chimaeric sounds reveal dichotomies in auditory perception,” Nature 416, 8790.
http://dx.doi.org/10.1038/416087a
33.
33. van Hoesel, R. , Jones, G. , and Litovsky, R. (2009). “ Interaural time-delay sensitivity in bilateral cochlear implant users: Effects of pulse rate, modulation rate, and place of stimulation,” J. Assoc. Res. Otolaryngol. 10, 557567.
http://dx.doi.org/10.1007/s10162-009-0175-x
34.
32. van Hoesel, R. J. M. (2007). “ Sensitivity to binaural timing in bilateral cochlear implant users,” J. Acoust. Soc. Am. 121, 21922206.
http://dx.doi.org/10.1121/1.2537300
35.
34. van Hoesel, R. J. M. , and Tyler, R. S. (2003). “ Speech perception, localization, and lateralization with bilateral cochlear implants,” J. Acoust. Soc. Am. 113, 16171630.
http://dx.doi.org/10.1121/1.1539520
36.
35. Wightman, F. L. , and Kistler, D. J. (1992). “ The dominant role of low-frequency interaural time differences in sound localization,” J. Acoust. Soc. Am. 91, 16481661.
http://dx.doi.org/10.1121/1.402445
http://aip.metastore.ingenta.com/content/asa/journal/jasa/138/6/10.1121/1.4937754
Loading
/content/asa/journal/jasa/138/6/10.1121/1.4937754
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/asa/journal/jasa/138/6/10.1121/1.4937754
2015-12-23
2016-12-09

Abstract

Recent psychophysical studies in bilateral cochlear implant users have shown that interaural timing difference (ITD) sensitivity with electrical stimulation varies depending on the place of stimulation along the cochlear array. While these studies have measured ITD sensitivity at single electrode places separately, it is important to understand how ITD sensitivity is affected when multiple electrodes are stimulated together because multi-electrode stimulation is required for representation of complex sounds. Multi-electrode stimulation may lead to poorer overall performance due to interference from places with poor ITD sensitivity, or from channel interaction due to electrical current spread. Alternatively, multi-electrode stimulation might result in overall good sensitivity if listeners can extract the most reliable ITD cues available. ITD just noticeable differences (JNDs) were measured for different multi-electrode configurations. Results showed that multi-electrode ITD JNDs were poorer than ITD JNDs for the best single-electrode pair. However, presenting ITD information along the whole array appeared to produce better sensitivity compared with restricting stimulation to the ends of the array, where ITD JNDs were comparable to the poorest single-electrode pair. These findings suggest that presenting ITDs in one cochlear region only may not be optimal for maximizing ITD sensitivity in multi-electrode stimulation.

Loading

Full text loading...

/deliver/fulltext/asa/journal/jasa/138/6/1.4937754.html;jsessionid=2nOl-gC2594tMXIvjAJgJWOZ.x-aip-live-03?itemId=/content/asa/journal/jasa/138/6/10.1121/1.4937754&mimeType=html&fmt=ahah&containerItemId=content/asa/journal/jasa
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=asadl.org/jasa/138/6/10.1121/1.4937754&pageURL=http://scitation.aip.org/content/asa/journal/jasa/138/6/10.1121/1.4937754'
Right1,Right2,Right3,