Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/asa/journal/jasa/138/6/10.1121/1.4938270
1.
1. Bérenger, J. P. (1994). “ A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185200.
http://dx.doi.org/10.1006/jcph.1994.1159
2.
2. Bonomo, A. L. , Chotiros, N. P. , and Isakson, M. J. (2015). “ On the validity of the effective density fluid model as an approximation of a poroelastic sediment layer,” J. Acoust. Soc. Am. 138, 748757.
http://dx.doi.org/10.1121/1.4926901
3.
3. Collino, F. , and Tsogka, C. (2001). “ Application of the perfectly matched absorbing layer model to the linear elastodynamic problem in anisotropic heterogeneous media,” Geophys. 66, 294307.
http://dx.doi.org/10.1190/1.1444908
4.
4. Drossaert, F. H. , and Giannopoulos, A. (2007a). “ A nonsplit complex frequency-shifted PML based on recursive integration for FDTD modeling of elastic waves,” Geophys. 72, T9T17.
http://dx.doi.org/10.1190/1.2424888
5.
5. Drossaert, F. H. , and Giannopoulos, A. (2007b). “ Complex frequency shifted convolution PML for FDTD modelling of elastic waves,” Wave Motion 44, 593604.
http://dx.doi.org/10.1016/j.wavemoti.2007.03.003
6.
6. Festa, G. , and Vilotte, J.-P. (2005). “ The Newmark scheme as velocity–stress time-staggering: An efficient PML implementation for spectral element simulations of elastodynamics,” Geophys. J. Int. 161, 789812.
http://dx.doi.org/10.1111/j.1365-246X.2005.02601.x
7.
7. Gao, Y. , Song, H. , Zhang, J. , and Yao, Z. (2016). “ Comparison of artificial absorbing boundaries for acoustic wave equation modeling,” Explor. Geophys. (in press).
http://dx.doi.org/10.1071/EG15068
8.
8. Komatitsch, D. , and Martin, R. (2007). “ An unsplit convolutional perfectly matched layer improved at grazing incidence for the seismic wave equation,” Geophys. 72, SM155SM167.
http://dx.doi.org/10.1190/1.2757586
9.
9. Komatitsch, D. , and Tromp, J. (2003). “ A perfectly matched layer absorbing boundary condition for the second-order seismic wave equation,” Geophys. J. Int. 154, 146153
http://dx.doi.org/10.1046/j.1365-246X.2003.01950.x
10.
10. Kuzuoglu, M. , and Mittra, R. (1996). “ Frequency dependence of the constitutive parameters of causal perfectly matched anisotropic absorbers,” IEEE Microw. Guided Wave Lett. 6, 447449.
http://dx.doi.org/10.1109/75.544545
11.
11. Li, Y. , and Matar, O. B. (2010). “ Convolutional perfectly matched layer for elastic second-order wave equation,” J. Acoust. Soc. Am. 127, 13181327.
http://dx.doi.org/10.1121/1.3290999
12.
12. Liu, Q. , and Tao, J. (1997). “ The perfectly matched layer for acoustic waves in absorptive media,” J. Acoust. Soc. Am. 102, 20722082.
http://dx.doi.org/10.1121/1.419657
13.
13. Liu, Y. , Liu, S. , Zhang, M. , and Ma, D. (2012). “ An improved perfectly matched layer absorbing boundary condition for second order elastic wave equation,” Prog. Geophys. (in Chinese) 27, 21132122.
http://dx.doi.org/10.6038/j.issn.1004-2903.2012.05.036
14.
14. Ma, Y. , Yu, J. , and Wang, Y. (2013). “ Unsplit perfectly matched layer for second-order acoustic wave equation,” Acta Acustica (in Chinese) 38, 681686.
http://dx.doi.org/10.15949/j.cnki.0371-0025.2013.06.015
15.
15. Ma, Y. , Yu, J. , and Wang, Y. (2014). “ A novel unsplit perfectly matched layer for the second-order acoustic wave equation,” Ultrasonics 54, 15681574.
http://dx.doi.org/10.1016/j.ultras.2014.03.016
16.
16. Pasalic, D. , and McGarry, R. (2010). “ Convolutional perfectly matched layer for isotropic and anisotropic acoustic wave equations,” in 2010 SEG Annual Meeting (Society of Exploration Geophysicists).
17.
17. Ping, P. , Zhang, Y. , and Xu, Y. (2014). “ A multiaxial perfectly matched layer (M-PML) for the long-time simulation of elastic wave propagation in the second-order equations,” J. Appl. Geophys. 101, 124135.
http://dx.doi.org/10.1016/j.jappgeo.2013.12.006
18.
18. Qi, Q. , and Geers, T. L. (1998). “ Evaluation of the perfectly matched layer for computational acoustics,” J. Comput. Phys. 139, 166183.
http://dx.doi.org/10.1006/jcph.1997.5868
19.
22. Ramadan, O. (2003), “ Auxiliary differential equation formulation: An efficient implementation of the perfectly matched layer,” IEEE Microwave Wireless Components Lett. 13(2), 6971.
http://dx.doi.org/10.1109/LMWC.2003.808706
20.
19. Roden, J. A. , and Gedney, S. D. (2000). “ Convolutional PML (CPML): An efficient FDTD implementation of the CFS-PML for arbitrary media,” Micro. Opt. Tech. Lett. 27, 334338.
http://dx.doi.org/10.1002/1098-2760(20001205)27:5<334::AID-MOP14>3.0.CO;2-A
21.
20. Xing, L. (2010). “ PML condition for the numerical simulation of acoustic wave,” in 2010 International Conference on Computing, Control and Industrial Engineering (CCIE), Wuhan, pp. 129132.
22.
21. Zhang, W. , and Shen, Y. (2010). “ Unsplit complex frequency-shifted PML implementation using auxiliary differential equations for seismic wave modeling,” Geophys. 75, T141T154.
http://dx.doi.org/10.1190/1.3463431
http://aip.metastore.ingenta.com/content/asa/journal/jasa/138/6/10.1121/1.4938270
Loading
/content/asa/journal/jasa/138/6/10.1121/1.4938270
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/asa/journal/jasa/138/6/10.1121/1.4938270
2015-12-30
2016-09-28

Abstract

The complex frequency shifted perfectly matched layer (CFS-PML) can improve the absorbing performance of PML for nearly grazing incident waves. However, traditional PML and CFS-PML are based on first-order wave equations; thus, they are not suitable for second-order wave equation. In this paper, an implementation of CFS-PML for second-order wave equation is presented using auxiliary differential equations. This method is free of both convolution calculations and third-order temporal derivatives. As an unsplit CFS-PML, it can reduce the nearly grazing incidence. Numerical experiments show that it has better absorption than typical PML implementations based on second-order wave equation.

Loading

Full text loading...

/deliver/fulltext/asa/journal/jasa/138/6/1.4938270.html;jsessionid=uXF-5GxY6EWRSnm0BueMim7R.x-aip-live-03?itemId=/content/asa/journal/jasa/138/6/10.1121/1.4938270&mimeType=html&fmt=ahah&containerItemId=content/asa/journal/jasa
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=asadl.org/jasa/138/6/10.1121/1.4938270&pageURL=http://scitation.aip.org/content/asa/journal/jasa/138/6/10.1121/1.4938270'
Right1,Right2,Right3,