Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/asa/journal/jasa/139/2/10.1121/1.4941915
1.
1. Bernstein, L. R. , and Trahiotis, C. (1985). “ Lateralization of low-frequency complex wave-forms: The use of envelope-based temporal disparities,” J. Acoust. Soc. Am. 77, 18681880.
http://dx.doi.org/10.1121/1.391938
2.
2. Blauert, J. (1969). “ Sound localization in the median plane,” Acustica 22, 205213.
3.
3. Blauert, J. (1982). “ Binaural localization: Multiple images and applications in rooms and electroacoustics,” in Localization of Sound: Theory and Applications, edited by R. W. Gatehouse ( Amphora, Groton, CT), pp. 6584.
4.
4. Blauert, J. (1996). Spatial Hearing, revised edition ( MIT Press, Cambridge, MA), pp. 109112, 170.
5.
5. Brughera, A. , Dunai, L. , and Hartmann, W. M. (2013). “ Human interaural time difference thresholds for sine tones. The high-frequency limit,” J. Acoust. Soc. Am. 133, 28392855.
http://dx.doi.org/10.1121/1.4795778
6.
6. Brungart, D. S. , and Rabinowitz, W. M. (1999). “ Auditory localization of nearby sources. HRTFs,” J. Acoust. Soc. Am. 106, 14651479.
http://dx.doi.org/10.1121/1.427180
7.
7. Buell, T. N. , Trahiotis, C. , and Bernstein, L. R. (1991). “ Lateralization of low-frequency tones: Relative potency of gating and ongoing interaural delays,” J. Acoust. Soc. Am. 90, 30773085.
http://dx.doi.org/10.1121/1.401782
8.
8. Cai, T. , Rakerd, B. , and Hartmann, W. M. (2015). “ Computing interaural differences through finite element modeling of idealized human heads,” J. Acoust. Soc. Am. 138, 15491560.
http://dx.doi.org/10.1121/1.4927491
9.
9. Colburn, H. S. (1977). “ Theory of binaural interaction based on auditory-nerve data. II. Detection of tones in noise,” J. Acoust. Soc. Am. 61, 525533.
http://dx.doi.org/10.1121/1.381294
10.
10. Colburn, H. S. , and Latimer, J. S. (1978). “ Theory of binaural interaction based on auditory-nerve data. III. Joint dependence on interaural time and amplitude differences in discrimination and detection,” J. Acoust. Soc. Am. 64, 95106.
http://dx.doi.org/10.1121/1.381960
11.
11. Constan, Z. A. , and Hartmann, W. M. (2003). “ On the detection of dispersion in the head-related transfer function,” J. Acoust. Soc. Am. 114, 9981008.
http://dx.doi.org/10.1121/1.1592159
12.
12. David, E. E. , Jr., Guttman, N. , and van Bergerijk, W. A. (1958). “ On the mechanism of binaural fusion,” J. Acoust. Soc. Am. Lett. 30, 801802.
http://dx.doi.org/10.1121/1.1909765
13.
13. Deatherage, B. H. , Eldredge, D. H. , and Davis, H. (1959). “ Latency of action potentials in the cochlea of the guinea pig,” J. Acoust. Soc. Am. 31, 479486.
http://dx.doi.org/10.1121/1.1907739
14.
14. Domnitz, R. H. (1975). “ A headphone monitoring system for binaural experiments below 1 kHz,” J. Acoust. Soc. Am. 58, 510511.
http://dx.doi.org/10.1121/1.380665
15.
15. Domnitz, R. H. , and Colburn, H. S. (1977). “ Lateral position and interaural discrimination,” J. Acoust. Soc. Am. 61, 15861598.
http://dx.doi.org/10.1121/1.381472
16.
16. Edmonds, B. A. , and Krumbholz, K. (2014). “ Are interaural time and level differences represented by independent or integrated codes in the human auditory cortex?,” J. Assn. Res. Otolaryngol. 15, 103114.
http://dx.doi.org/10.1007/s10162-013-0421-0
17.
17. Elpern, B. S. , and Naughton, R. F. (1964). “ Lateralizing effects of interaural phase differences,” J. Acoust. Soc. Am. 36, 13921393.
http://dx.doi.org/10.1121/1.1919215
18.
18. Gaik, W. (1993). “ Combined evaluation of interaural time and intensity differences: Psychoacoustic results and computer modeling,” J. Acoust. Soc. Am. 94, 98110.
http://dx.doi.org/10.1121/1.406947
19.
19. Garner, W. R. , and Wertheimer, M. (1951). “ Some effects of interaural phase differences on the perception of pure tones,” J. Acoust. Soc. Am. 23, 664667.
http://dx.doi.org/10.1121/1.1906818
20.
20. Hafter, E. R. , and Carrier, S. C. (1972). “ Binaural interactions in low-frequency stimuli: The inability to trade time and intensity completely,” J. Acoust. Soc. Am. 51, 18521862.
http://dx.doi.org/10.1121/1.1913044
21.
21. Hammershøi, D. , and Møller, H. (1996). “ Sound transmission to and within the human ear canal,” J. Acoust. Soc. Am. 100, 408427.
http://dx.doi.org/10.1121/1.415856
22.
22. Hebrank, J. , and Wright, D. (1974). “ Spectral cues used in the localization of sound sources on the median plane,” J. Acoust. Soc. Am. 56, 18291834.
http://dx.doi.org/10.1121/1.1903520
23.
23. Macpherson, E. A. , and Middlebrooks, J. C. (2002). “ Listener weighting of cues for lateral angle: The duplex theory of sound localization revisited,” J. Acoust. Soc. Am. 111, 22192236.
http://dx.doi.org/10.1121/1.1471898
24.
24. Macpherson, E. A. , and Sabin, A. T. (2007). “ Binaural weighting of monaural spectral cues for sound localization,” J. Acoust. Soc. Am. 121, 36773688.
http://dx.doi.org/10.1121/1.2722048
25.
25. McFadden, D. , Jeffress, L. A. , and Russell, W. E. (1973). “ Individual differences in sensitivity to interaural differences in time and level,” Percept. Motor Skills 37, 755761.
http://dx.doi.org/10.2466/pms.1973.37.3.755
26.
26. Mills, A. W. (1958). “ On the minimum audible angle,” J. Acoust. Soc. Am. 30, 237246.
http://dx.doi.org/10.1121/1.1909553
27.
27. Mills, A. W. (1960). “ Lateralization of high frequency tones,” J. Acoust. Soc. Am. 32, 132134.
http://dx.doi.org/10.1121/1.1907864
28.
28. Morimoto, M. , and Ando, Y. (1980). “ On the simulation of sound localization,” J. Acoust. Soc. Jpn. 1, 167174.
http://dx.doi.org/10.1250/ast.1.167
29.
29. Moushegian, G. , and Jeffress, L. A. (1959). “ Role of interaural time and intensity differences in the lateralization of low-frequency tones,” J. Acoust. Soc. Am. 31, 14411445.
http://dx.doi.org/10.1121/1.1907647
30.
30. Rakerd, B. , and Hartmann, W. M. (2010). “ Localization of sound in rooms. V. Binaural coherence and human sensitivity to interaural time differences in noise,” J. Acoust. Soc. Am. 128, 30523063.
http://dx.doi.org/10.1121/1.3493447
31.
31. Ravicz, M. E. , Cheng, J. T. , and Rosowski, J. J. (2014). “ Sound pressure distribution within natural and artificial human ear canals: Forward stimulation,” J. Acoust. Soc. Am. 136, 31323146.
http://dx.doi.org/10.1121/1.4898420
32.
32. Roffler, S. K. , and Butler, R. A. (1968). “ Factors that influence the localization of sound in the vertical plane,” J. Acoust. Soc. Am. 43, 12551260.
http://dx.doi.org/10.1121/1.1910976
33.
33. Sandel, T. T. , Teas, D. C. , Feddersen, W. E. , and Jeffress, L. A. (1955). “ Localization of sound from single and paired sources,” J. Acoust. Soc. Am. 27, 842852.
http://dx.doi.org/10.1121/1.1908052
34.
34. Sayers, B. McA. (1964). “ Acoustic-image lateralization judgments with binaural tones,” J. Acoust. Soc. Am. 36, 923926.
http://dx.doi.org/10.1121/1.1919121
35.
35. Sayers, B. McA. , and Cherry, E. C. (1957). “ Mechanism of binaural fusion in the hearing of speech,” J. Acoust. Soc. Am. 29, 973987.
http://dx.doi.org/10.1121/1.1914990
36.
36. Schiano, J. L. , Trahiotis, C. , and Bernstein, L. R. (1986). “ Lateralization of low-frequency tones and narrow bands of noise,” J. Acoust. Soc. Am. 79, 15631570.
http://dx.doi.org/10.1121/1.393683
37.
37. Schroeder, M. R. , and Atal, B. S. (1963). “ Computer simulation of sound transmission in rooms,” IEEE Int. Conv. Rec. 11, 150155.
38.
38. Shaxby, J. H. , and Gage, F. H. (1932). “ The localization of sounds in the median plane,” Special Report No. 166, Medical Research Council, Reports of the Committee upon the Physiology of Hearing, H. M Stationery Office Code 45-5-66, Universal Decimal Classification 612-858-751+535-76, pp. 1–32.
39.
39. Stern, R. M. , and Colburn, H. S. (1978). “ Theory of binaural interaction based on auditory-nerve data. IV. A model for subjective lateral position,” J. Acoust. Soc. Am. 64, 127140.
http://dx.doi.org/10.1121/1.381978
40.
40. Stern, R. M. , and Shear, G. D. (1996). “ Lateralization and detection of low-frequency binaural stimuli: Effects of distribution of internal delay,” J. Acoust. Soc. Am. 100, 22782288.
http://dx.doi.org/10.1121/1.417937
41.
41. Stevens, S. S. , and Newman, E. B. (1936). “ The location of actual sources of sound,” Am. J. Psych. 48, 297306.
http://dx.doi.org/10.2307/1415748
42.
42. Strutt, J. W. (1907). “ On our perception of sound direction,” Philos. Mag. 13, 214232.
http://dx.doi.org/10.1080/14786440709463595
43.
43. Strutt, J. W. (1909). “ On our perception of the direction of sound,” Proc. R. Soc. London 83, 6164.
44.
44. Trahiotis, C. , and Stern, R. M. (1989). “ Lateralization of bands of noise: Effects of bandwidth and differences of interaural time and phase,” J. Acoust. Soc. Am. 86, 12851293.
http://dx.doi.org/10.1121/1.398743
45.
52. Whitworth, R. H. , and Jeffress, L. A. (1961). “ Time vs intensity in the localization of tones,” J. Acoust. Soc. Am. 33, 925929.
http://dx.doi.org/10.1121/1.1908849
46.
45. Wightman, F. L. , and Kistler, D. J. (1989a). “ Headphone simulation of free field listening. I: Stimulus synthesis,” J. Acoust. Soc. Am. 85, 858867.
http://dx.doi.org/10.1121/1.397557
47.
46. Wightman, F. L. , and Kistler, D. J. (1989b). “ Headphone simulation of free field listening. II: Psychophysical validation,” J. Acoust. Soc. Am. 85, 868878.
http://dx.doi.org/10.1121/1.397558
48.
47. Wightman, F. L. , and Kistler, D. J. (1992). “ The dominant role of low-frequency interaural time differences in sound localization,” J. Acoust. Soc. Am. 91, 16481661.
http://dx.doi.org/10.1121/1.402445
49.
48. Yost, W. A. (1981). “ Lateral position of sinusoids presented with interaural intensive and temporal differences,” J. Acoust. Soc. Am. 70, 397409.
http://dx.doi.org/10.1121/1.386775
50.
49. Young, L. L. (1976). “ Time-intensity trading functions for selected pure tones,” J. Speech Hear. Res. 19, 5567.
http://dx.doi.org/10.1044/jshr.1901.55
51.
50. Zhang, P. X. , and Hartmann, W. M. (2006). “ Lateralization of sine tones—Interaural time vs phase,” J. Acoust. Soc. Am. 120, 34713474.
http://dx.doi.org/10.1121/1.2372456
52.
51. Zhang, P. X. , and Hartmann, W. M. (2010). “ On the ability of human listeners to distinguish between front and back,” Hear. Res. 260, 3046.
http://dx.doi.org/10.1016/j.heares.2009.11.001
http://aip.metastore.ingenta.com/content/asa/journal/jasa/139/2/10.1121/1.4941915
Loading
/content/asa/journal/jasa/139/2/10.1121/1.4941915
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/asa/journal/jasa/139/2/10.1121/1.4941915
2016-02-24
2016-12-05

Abstract

The roles of interaural time difference(ITD) and interaural level difference (ILD) were studied in free-field source localization experiments for sine tones of low frequency (250–750 Hz). Experiments combined real-source trials with virtual trials created through transaural synthesis based on real-time ear canal measurements. Experiments showed the following: (1) The naturally occurring ILD is physically large enough to exert an influence on sound localization well below 1000 Hz. (2) An ILD having the same sign as the ITD modestly enhances the perceived azimuth of tones for all values of the ITD, and it eliminates left-right confusions that otherwise occur when the interaural phase difference (IPD) passes 180°. (3) Increasing the ILD to large, implausible values can decrease the perceived laterality while also increasing front-back confusions. (4) Tone localization is more directly related to the ITD than to the IPD. (5) An ILD having a sign opposite to the ITD promotes a slipped-cycle ITD, sometimes with dramatic effects on localization. Because the role of the ITD itself is altered by the ILD, the duplex processing of ITD and ILD reflects more than mere trading; the effect of the ITD can be reversed in sign.

Loading

Full text loading...

/deliver/fulltext/asa/journal/jasa/139/2/1.4941915.html;jsessionid=n_PRotwReM5VlqUAPKCuiKnP.x-aip-live-03?itemId=/content/asa/journal/jasa/139/2/10.1121/1.4941915&mimeType=html&fmt=ahah&containerItemId=content/asa/journal/jasa
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=asadl.org/jasa/139/2/10.1121/1.4941915&pageURL=http://scitation.aip.org/content/asa/journal/jasa/139/2/10.1121/1.4941915'
Right1,Right2,Right3,