Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. M. J. Buckingham and S. A. S. Jones, “ A new shallow ocean technique for determining the critical angle of the seabed from the vertical directionality of the ambient noise in the water column,” J. Acoust. Soc. Am. 81(4), 938946 (1987).
2. G. B. Deane, M. J. Buckingham, and C. T. Tindle, “ Vertical coherence of ambient noise in shallow water overlying a fluid sea bed,” J. Acoust. Soc. Am. 102(6), 34133424 (1997).
3. N. M. Carbone, G. B. Deane, and M. J. Buckingham, “ Estimating the compressional and shear wave speeds of a shallow water seabed from the vertical coherence of ambient noise in the water column,” J. Acoust. Soc. Am. 103(2), 801813 (1998).
4. C. H. Harrison and D. G. Simons, “ Geoacoustic inversion of ambient noise: A simple method,” J. Acoust. Soc. Am. 112(4), 13771389 (2002).
5. N. H. Hashimi, “ Comparative study of the moment and graphic size parameters of the sediments of the western continental shelf of India,” J. Int. Assn. Math. Geol. 13(4), 291301 (1981).
6. S. Manokaran, P. Mishra, S. A. Khan, K. G. M. T Ansari, and S. Raju, “ Textural characteristics of shelf surface sediments of southeast coast of India,” Ind. J. Mar. Sci. 43, 961970 (2014).
7. H. Schmidt, oases, Version 3.1, User Guide and Reference Manual ( MIT, Cambridge, MA, 2004).
8. F. Desharnais, M. L. Drover, and C. A. Gillard, “ Acoustics 2002 – Innovations in Acoustics and Vibration,” in Annual Conference of the Australian Acoustical Society, Adelaide, Australia (November 13–15, 2002).
9. D. F. Gingras and P. Gerstoft, “ Inversion for geometric and geoacoustic parameters in shallow water: Experimental results,” J. Acoust. Soc. Am. 97(6), 35893598 (1995).
10. P. Gerstoft, “ Inversion of seismoacoustic data using genetic algorithms and aposteriori probability distributions,” J. Acoust. Soc. Am. 95(2), 770782 (1994).
11. P. Ratilal, P. Gerstoft, and J. T. Goh, “ Subspace approach to inversion by genetic algorithms involving multiple frequencies,” J. Comput. Acoust. 06, 99115 (1998).
12. M. Siderius, P. L. Nielsen, and P. Gerstoft, “ Range-dependent seabed characterization by inversion of acoustic data from a towed receiver array,” J. Acoust. Soc. Am. 109(5), 2394 (2001).
13. G. R. Potty, J. H. Miller, and J. F. Lynch, “ Inversion for sediment geoacoustic properties at the New England Bight,” J. Acoust. Soc. Am. 114(4), 18741887(2003).
14. G. R. Potty, J. H. Miller, P. H. Dahl, and C. J. Lazauski, “ Geoacoustic inversion results from the ASIAEX East China Sea experiment,” IEEE J. Ocean. Eng. 29(4), 10001010 (2004).
15. E. L. Hamilton, “ Geoacoustic modeling of the seafloor,” J. Acoust. Soc. Am. 68(5), 13131340 (1980).

Data & Media loading...


Article metrics loading...



Seabed parameters are inverted from ambient noise measurements at two shallow tropical environments with dissimilar seabed characteristics, a silty and a sandy seabed, using an approach that matches the measured and modeled complex vertical coherence.Coherence is modeled using the Green's function output from the model, along with theoretical formulation, for a range independent environment. Genetic algorithm is used to search the model parameter space consisting of sound speed, density, and attenuation in the sediment layers and half-space. Reasonable estimates have been obtained for the silty site, whereas the sandy site gave relatively poor parameter estimates due to reflective seabed and shipping interference.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd