Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/asa/journal/jasa/139/4/10.1121/1.4945746
1.
1. M. Aretz, “ Specification of realistic boundary conditions for the FE simulation of low frequency sound fields in recording studios,” Acta Acust. Acust. 95, 874882 (2009).
http://dx.doi.org/10.3813/AAA.918219
2.
2. N. Raghuvanshi, R. Narain, and M. Lin, “ Efficient and accurate sound propagation using adaptive rectangular decomposition,” IEEE Trans. Vis. Comput. Graphics 15, 789801 (2009).
http://dx.doi.org/10.1109/TVCG.2009.28
3.
3. L. Savioja and V. Välimäki, “ Reducing the dispersion error in the digital waveguide mesh using interpolation and frequency-warping techniques,” IEEE Trans. Audio, Speech, Lang. Process. 8, 184194 (2000).
http://dx.doi.org/10.1109/89.824704
4.
4. D. Peterson and D. Middleton, “ Sampling and reconstruction of wave-number-limited functions in N-dimensional Euclidean spaces,” Inf. Control 5, 279323 (1962).
http://dx.doi.org/10.1016/S0019-9958(62)90633-2
5.
5. B. Hamilton and S. Bilbao, “ On finite difference schemes for the 3-D wave equation using non-Cartesian grids,” in Proceedings of Sound and Music Computing Conference, Stockholm, Sweden (2013), pp. 592599.
6.
6. K. Kowalczyk and M. van Walstijn, “ Room acoustics simulation using 3-D compact explicit FDTD schemes,” IEEE Trans. Audio, Speech, Lang. Process. 19, 3446 (2011).
http://dx.doi.org/10.1109/TASL.2010.2045179
7.
7. L. Savioja, “ Real-time 3D finite-difference time-domain simulation of low- and mid-frequency room acoustics,” in 13th International Conference on Digital Audio Effects, Graz, Austria (2010), pp. 7784.
8.
8. B. Hamilton and C. J. Webb, “ Room acoustics modelling using GPU-accelerated finite difference and finite volume methods on a face-centered cubic grid,” in 16th International Conference on Digital Audio Effects, Maynooth, Ireland (2013), pp. 336343.
9.
9. J. B. Schneider and C. L. Wagner, “ FDTD dispersion revisited: Faster-than-light propagation,” IEEE Microwave Guided Wave Lett. 9, 5456 (1999).
http://dx.doi.org/10.1109/75.755044
10.
10. A. Southern, D. Murphy, T. Lokki, and L. Savioja, “ The perceptual effects of dispersion error on room acoustic model auralization,” in Proceeding Forum Acusticum, Aalborg, Denmark (2011), pp. 15531558.
11.
11. A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd ed. ( Artech House, Boston, 2000), Chap. 5, pp. 175233.
12.
12. M. Cobos, J. Escolano, J. J. López, and B. Pueo, “ Subjective effects of dispersion in the simulation of room acoustics using digital waveguide mesh,” in 124th Convention of Audio Engineering Society, Amsterdam, Netherlands (2008), Paper No. 7471.
13.
13. J. H. Patterson and D. M. Green, “ Discrimination of transient signals having identical energy spectra,” J. Acoust. Soc. Am. 48, 894905 (1970).
http://dx.doi.org/10.1121/1.1912229
14.
14. J. Blauert and P. Laws, “ Group delay distortions in electroacoustical systems,” J. Acoust. Soc. Am. 63, 14781483 (1978).
http://dx.doi.org/10.1121/1.381841
15.
15. J. Deer, P. Bloom, and D. Preis, “ Perception of phase distortion in all-pass filters,” J. Audio Eng. Soc. 33, 782786 (1985).
16.
16. S. Flanagan, B. C. Moore, and M. A. Stone, “ Discrimination of group delay in click-like signals presented via headphones and loudspeakers,” J. Audio Eng. Soc. 53, 593611 (2005).
17.
17. H. Møller, P. Minnaar, S. K. Olesen, F. Christensen, and J. Plogsties, “ On the audibility of all-pass phase in electroacoustical transfer functions,” J. Audio Eng. Soc. 55, 113134 (2007).
18.
18. A. Gourlay and A. Mitchell, “ A classification of split difference methods for hyperbolic equations in several space dimensions,” SIAM J. Numer. Anal. 6, 6271 (1969).
http://dx.doi.org/10.1137/0706006
19.
19. M. van Walstijn and K. Kowalczyk, “ On the numerical solution of the 2D wave equation with compact FDTD schemes,” in 11th International Conference on Digital Audio Effects, Espoo, Finland (2008), pp. 205212.
20.
20. G. A. Soulodre, “ Evaluation of objective loudness meters,” in 116th Convention of Audio Engineering Society, Berlin, Germany (2004), Paper No. 6161.
21.
21. A. B. Watson and D. G. Pelli, “ Quest: A Bayesian adaptive psychometric method,” Percept. Psychophys. 33, 113120 (1983).
http://dx.doi.org/10.3758/BF03202828
22.
22. S. P. McKee, S. A. Klein, and D. Y. Teller, “ Statistical properties of forced-choice psychometric functions: Implications of probit analysis,” Percept. Psychophys. 37, 286298 (1985).
http://dx.doi.org/10.3758/BF03211350
23.
23. B. Treutwein, “ Adaptive psychophysical procedures,” Vis. Res. 35, 25032522 (1995).
http://dx.doi.org/10.1016/0042-6989(95)00016-X
24.
24. M. R. Leek, “ Adaptive procedures in psychophysical research,” Percept. Psychophys. 63, 12791292 (2001).
http://dx.doi.org/10.3758/BF03194543
25.
25. J. W. Peirce, “ PsychoPy–Psychophysics software in Python,” J. Neurosci. Methods 162, 813 (2007).
http://dx.doi.org/10.1016/j.jneumeth.2006.11.017
26.
26. S. S. Shapiro and M. B. Wilk, “ An analysis of variance test for normality (complete samples),” Biometrika 52, 591611 (1965).
http://dx.doi.org/10.1093/biomet/52.3-4.591
27.
27. F. Wilcoxon, “ Individual comparisons by ranking methods,” Biometrics Bull. 1, 8083 (1945).
http://dx.doi.org/10.2307/3001968
28.
28. B. B. Schultz, “ Levene's test for relative variation,” Systematic Biol. 34, 449456 (1985).
http://dx.doi.org/10.1093/sysbio/34.4.449
http://aip.metastore.ingenta.com/content/asa/journal/jasa/139/4/10.1121/1.4945746
Loading
/content/asa/journal/jasa/139/4/10.1121/1.4945746
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/asa/journal/jasa/139/4/10.1121/1.4945746
2016-04-13
2016-10-01

Abstract

Finite-difference time-domain(FDTD) simulation has been a popular area of research in room acoustics due to its capability to simulate wave phenomena in a wide bandwidth directly in the time-domain. A downside of the method is that it introduces a direction and frequency dependent error to the simulated sound field due to the non-linear dispersion relation of the discrete system. In this study, the perceptual threshold of the dispersion error is measured in three-dimensional FDTD schemes as a function of simulation distance. Dispersion error is evaluated for three different explicit, non-staggered FDTD schemes using the numerical wavenumber in the direction of the worst-case error of each scheme. It is found that the thresholds for the different schemes do not vary significantly when the phase velocity error level is fixed. The thresholds are found to vary significantly between the different sound samples. The measured threshold for the audibility of dispersion error at the probability level of 82% correct discrimination for three-alternative forced choice is found to be 9.1 m of propagation in a free field, that leads to a maximum group delay error of 1.8 ms at 20 kHz with the chosen phase velocity error level of 2%.

Loading

Full text loading...

/deliver/fulltext/asa/journal/jasa/139/4/1.4945746.html;jsessionid=DBJELE9XyqhVMxenic-Kt1F0.x-aip-live-02?itemId=/content/asa/journal/jasa/139/4/10.1121/1.4945746&mimeType=html&fmt=ahah&containerItemId=content/asa/journal/jasa
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=asadl.org/jasa/139/4/10.1121/1.4945746&pageURL=http://scitation.aip.org/content/asa/journal/jasa/139/4/10.1121/1.4945746'
Right1,Right2,Right3,