Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/asa/journal/jasa/139/5/10.1121/1.4946831
1.
1. O. D. Kripfgans, J. B. Fowlkes, D. L. Miller, O. P. Eldevik, and P. L. Carson, “ Acoustic droplet vaporization for therapeutic and diagnostic applications,” Ultrasound Med. Biol. 26(7), 11771189 (2000).
http://dx.doi.org/10.1016/S0301-5629(00)00262-3
2.
2. P. S. Sheeran, V. P. Wong, S. Luois, R. J. McFarland, W. D. Ross, S. Feingold, T. O. Matsunaga, and P. A. Dayton, “ Decafluorobutane as a phase-change contrast agent for low-energy extravascular ultrasonic imaging,” Ultrasound Med. Biol. 37(9), 15181530 (2011).
http://dx.doi.org/10.1016/j.ultrasmedbio.2011.05.021
3.
3. M. L. Fabiilli, K. J. Haworth, I. E. Sebastian, O. D. Kripfgans, P. L. Carson, and J. B. Fowlkes, “ Delivery of chlorambucil using an acoustically-triggered perfluoropentane emulsion,” Ultrasound Med. Biol. 36(8), 13641375 (2010).
http://dx.doi.org/10.1016/j.ultrasmedbio.2010.04.019
4.
4. J. A. Kopechek, E. J. Park, Y. Z. Zhang, N. I. Vykhodtseva, N. J. McDannold, and T. M. Porter, “ Cavitation-enhanced mr-guided focused ultrasound ablation of rabbit tumors in vivo using phase shift nanoemulsions,” Phys. Med. Biol. 59(13), 34653481 (2014).
http://dx.doi.org/10.1088/0031-9155/59/13/3465
5.
5. K. Radhakrishnan, C. K. Holland, and K. J. Haworth, “ Scavenging dissolved oxygen via acoustic droplet vaporization,” Ultrason. Sonochem. 31, 394403 (2016).
http://dx.doi.org/10.1016/j.ultsonch.2016.01.019
6.
6. N. de Jong, F. J. ten Cate, W. B. Vletter, and J. R. Roelandt, “ Quantification of transpulmonary echocontrast effects,” Ultrasound Med. Biol. 19(4), 279288 (1993).
http://dx.doi.org/10.1016/0301-5629(93)90100-3
7.
7. O. Shpak, M. Verweij, H. J. Vos, N. de Jong, D. Lohse, and M. Versluis, “ Acoustic droplet vaporization is initiated by superharmonic focusing,” Proc. Natl. Acad. Sci. U.S.A. 111(5), 16971702 (2014).
http://dx.doi.org/10.1073/pnas.1312171111
8.
8. J. A. Feshitan, C. C. Chen, J. J. Kwan, and M. A. Borden, “ Microbubble size isolation by differential centrifugation,” J. Colloid Interface Sci. 329(2), 316324 (2009).
http://dx.doi.org/10.1016/j.jcis.2008.09.066
9.
9. M. L. Fabiilli, J. Silpe, C. Rush, D. Lemmerhirt, E. Tang, G. Vasey, and O. D. Kripfgans, “ High throughput production of uniformly-sized fluorocarbon emulsions for ultrasonic therapy using a silicon-based microfluidic system,” IEEE Int. Ultrason. Symp. 17701773 (2014).
http://dx.doi.org/10.1109/ULTSYM.2014.0439
10.
10. T. Segers and M. Versluis, “ Acoustic bubble sorting for ultrasound contrast agent enrichment,” Lab Chip 14(10), 17051714 (2014).
http://dx.doi.org/10.1039/c3lc51296g
11.
11. D. Bardin, T. D. Martz, P. S. Sheeran, R. Shih, P. A. Dayton, and A. P. Lee, “ High-speed, clinical-scale microfluidic generation of stable phase-change droplets for gas embolotherapy,” Lab Chip 11(23), 39903998 (2011).
http://dx.doi.org/10.1039/c1lc20615j
12.
12. O. D. Kripfgans, C. M. Orifici, P. L. Carson, K. A. Ives, O. P. Eldevik, and J. B. Fowlkes, “ Acoustic droplet vaporization for temporal and spatial control of tissue occlusion: A kidney study,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52(7), 11011110 (2005).
http://dx.doi.org/10.1109/TUFFC.2005.1503996
13.
13. K. Cheung, O. Couture, P. D. Bevan, E. Cherin, R. Williams, P. N. Burns, and F. S. Foster, “ In vitro characterization of the subharmonic ultrasound signal from definity microbubbles at high frequencies,” Phys. Med. Biol. 53(5), 12091223 (2008).
http://dx.doi.org/10.1088/0031-9155/53/5/004
14.
14. H. Shekhar, J. J. Rychak, and M. M. Doyley, “ Modifying the size distribution of microbubble contrast agents for high-frequency subharmonic imaging,” Med. Phys. 40(8), 082903 (2013).
http://dx.doi.org/10.1118/1.4813017
15.
15. S. Kvale, H. A. Jakobsen, O. A. Asbjornsen, and T. Omtveit, “ Size fractionation of gas-filled microspheres by flotation,” Separ. Technol. 6(4), 219226 (1996).
http://dx.doi.org/10.1016/S0956-9618(96)00157-9
http://aip.metastore.ingenta.com/content/asa/journal/jasa/139/5/10.1121/1.4946831
Loading
/content/asa/journal/jasa/139/5/10.1121/1.4946831
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/asa/journal/jasa/139/5/10.1121/1.4946831
2016-05-11
2016-10-01

Abstract

Perfluorocarbon droplets that are capable of an ultrasound-mediated phase transition have applications in diagnostic and therapeuticultrasound. Techniques to modify the droplet size distribution are of interest because of the size-dependent acoustic response of the droplets. Differential centrifugation has been used to isolate specific sizes of microbubbles. In this work, differential centrifugation was employed to isolate droplets with diameters between 1 and 3 μm and 2 and 5 μm from an initially polydisperse distribution. Further, an empirical model was developed for predicting the droplet size distribution following differential centrifugation and to facilitate the selection of centrifugation parameters for obtaining desired size distributions.

Loading

Full text loading...

/deliver/fulltext/asa/journal/jasa/139/5/1.4946831.html;jsessionid=4Gfhq2PMDRDFQIAqWqY1Evin.x-aip-live-06?itemId=/content/asa/journal/jasa/139/5/10.1121/1.4946831&mimeType=html&fmt=ahah&containerItemId=content/asa/journal/jasa
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=asadl.org/jasa/139/5/10.1121/1.4946831&pageURL=http://scitation.aip.org/content/asa/journal/jasa/139/5/10.1121/1.4946831'
Right1,Right2,Right3,