Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/asa/journal/jasa/139/6/10.1121/1.4949543
1.
T. Brunet, A. Merlin, B. Mascaro, K. Zimny, J. Leng, O. Poncelet, C. Aristégui, and O. Mondain-Monval, “ Soft 3D acoustic metamaterial with negative index,” Nat. Mater. 14, 384388 (2015).
http://dx.doi.org/10.1038/nmat4164
2.
J. M. Manimala, H. H. Huang, C. T. Sun, R. Snyder, and S. Bland, “ Dynamic load mitigation using negative effective mass structures,” Eng. Struct. 80, 458468 (2014).
http://dx.doi.org/10.1016/j.engstruct.2014.08.052
3.
H. H. Huang, C. T. Sun, and G. L. Huang, “ On the negative effective mass density in acoustic metamaterials,” Int. J. Eng. Sci. 47(4), 610617 (2009).
http://dx.doi.org/10.1016/j.ijengsci.2008.12.007
4.
J. M. Manimala and C. T. Sun, “ Microstructural design studies for locally dissipative acoustic metamaterials,” J. Appl. Phys. 115, 023518 (2014).
http://dx.doi.org/10.1063/1.4861632
5.
P. Wang, F. Casadei, S. Shan, J. C. Weaver, and K. Bertoldi, “ Harnessing buckling to design tunable locally resonant acoustic metamaterials,” Phys. Rev. Lett. 113, 014301 (2014).
http://dx.doi.org/10.1103/PhysRevLett.113.014301
6.
Y. Chen, H. Liu, M. Reilly, H. Bae, and M. Yu, “ Enhanced acoustic sensing through wave compression and pressure amplification in anisotropic metamaterials,” Nat. Commun. 5, 5247 (2014).
http://dx.doi.org/10.1038/ncomms6247
7.
T. P. Sapsis, D. D. Quinn, A. F. Vakakis, and L. A. Bergman, “ Effective stiffening and damping enhancement of structures with strongly nonlinear local attachments,” J. Vib. Acoust. 134(1), 011016 (2012).
http://dx.doi.org/10.1115/1.4005005
8.
B. P. Mann and N. D. Sims, “ Energy harvesting from the nonlinear oscillations of magnetic levitation,” J. Sound Vib. 319, 515530 (2009).
http://dx.doi.org/10.1016/j.jsv.2008.06.011
9.
R. K. Narisetti, M. J. Leamy, and M. Ruzzene, “ A perturbation approach for predicting wave propagation in one-dimensional nonlinear periodic structures,” J. Vib. Acoust. 132(3), 031001 (2010).
http://dx.doi.org/10.1115/1.4000775
10.
K. Manktelow, M. J. Leamy, and M. Ruzzene, “ Multiple scales analysis of wave-wave interactions in a cubically nonlinear monoatomic chain,” Nonlinear Dyn. 63, 193203 (2011).
http://dx.doi.org/10.1007/s11071-010-9796-1
11.
A. Marathe and A. Chatterjee, “ Wave attenuation in nonlinear periodic structures using harmonic balance and multiple scales,” J. Sound Vib. 289, 871888 (2006).
http://dx.doi.org/10.1016/j.jsv.2005.02.047
12.
N. Boechler, C. Daraio, R. K. Narisetti, M. Ruzzene, and M. J. Leamy, “ Analytical and experimental analysis of bandgaps in nonlinear one dimensional periodic structures,” in IUTAM Symposium on Recent Advances of Acoustic Waves in Solids, IUTAM Bookseries ( Springer Science + Business Media, New York, 2010), Vol. 26.
13.
M. Maess, L. J. Jacobs, and J. Qu, “ Nonlinear wave propagation in silicon rubber using a bifrequency signal and laser detection,” AIP Conf. Proc. 615, 13691376 (2002).
http://dx.doi.org/10.1063/1.1472954
14.
L. Fan, Z. Chen, Y.-C. Deng, J. Ding, H. Ge, S.-Y. Zhang, Y.-T. Yang, and H. Zhang, “ Nonlinear effects in a metamaterial with double negativity,” Appl. Phys. Lett. 105, 041904 (2014).
http://dx.doi.org/10.1063/1.4892009
15.
S. Zhang and Y. Zhang, “ Broadband unidirectional acoustic transmission based on piecewise linear acoustic metamaterials,” Chin. Sci. Bull. 59(26), 32393245 (2014).
http://dx.doi.org/10.1007/s11434-014-0463-7
16.
B.-I. Popa and S. A. Cummer, “ Non-reciprocal and highly nonlinear active acoustic metamaterials,” Nat. Commun. 5, 3398 (2014).
http://dx.doi.org/10.1038/ncomms4398
17.
C. V. Jutte and S. Kota, “ Design of single, multiple, and scaled nonlinear springs for prescribed nonlinear responses,” J. Mech. Des. 132, 011003 (2010).
http://dx.doi.org/10.1115/1.4000595
18.
D. Spreemann, B. Folkmer, and Y. Manoli, “ Realization of nonlinear hardening springs with predefined characteristic for vibration transducers based on beam structures,” in Proceedings of the MikroSystem Technik KONGRESS, Darmstadt, Germany (2011).
19.
J. M. Manimala and C. T. Sun, “ Amplitude-dependent dynamic response in acoustic metamaterials with nonlinear oscillators,” in 17th U.S. National Congress on Theoretical & Applied Mechanics, Paper No. D11-1124, East Lansing, MI (June, 2014).
20.
A. S. Phani and M. I. Hussein, “ Analysis of damped Bloch waves by the Rayleigh perturbation method,” J. Vib. Acoust. 135, 041014 (2013).
http://dx.doi.org/10.1115/1.4024397
http://aip.metastore.ingenta.com/content/asa/journal/jasa/139/6/10.1121/1.4949543
Loading
/content/asa/journal/jasa/139/6/10.1121/1.4949543
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/asa/journal/jasa/139/6/10.1121/1.4949543
2016-06-30
2016-12-08

Abstract

The amplitude-dependent dynamic response in acoustic metamaterials having nonlinear local oscillator microstructures is studied using numerical simulations on representative discrete mass-spring models. Both cubically nonlinear hardening and softening local oscillator cases are considered. Single frequency, bi-frequency, and wave packet excitations at low and high amplitude levels were used to interrogate the models. The propagation and attenuation characteristics of harmonic waves in a tunable frequency range is found to correspond to the amplitude and nonlinearity-dependent shifts in the local resonance bandgap for such nonlinear acoustic metamaterials. A predominant shift in the propagated wave spectrum towards lower frequencies is observed. Moreover, the feasibility of amplitude and frequency-dependent selective filtering of composite signals consisting of individual frequency components which fall within propagating or attenuating regimes is demonstrated. Further enrichment of these wave manipulation mechanisms in acoustic metamaterials using different combinations of nonlinear microstructures presents device implications for acoustic filters and waveguides.

Loading

Full text loading...

/deliver/fulltext/asa/journal/jasa/139/6/1.4949543.html;jsessionid=QZ5caLVWxJ2Sjvi-D6cbskDh.x-aip-live-06?itemId=/content/asa/journal/jasa/139/6/10.1121/1.4949543&mimeType=html&fmt=ahah&containerItemId=content/asa/journal/jasa
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=asadl.org/jasa/139/6/10.1121/1.4949543&pageURL=http://scitation.aip.org/content/asa/journal/jasa/139/6/10.1121/1.4949543'
Right1,Right2,Right3,