Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
Y. Pennec, J. O. Vasseur, B. Djafari-Rouhani, L. Dobrzyński, and P. A. Deymier, “ Two-dimensional phononic crystals: Examples and applications,” Surf. Sci. Rep. 65(8), 229291 (2010).
Acoustic Metamaterials and Phononic Crystals, Vol. 173 of Springer Series in Solid-State Sciences, edited by P. A. Deymier ( Springer, Berlin, 2013), pp. 112.
C. E. Bradley, “ Time harmonic acoustic Bloch wave propagation in periodic waveguides. Part I. Theory,” J. Acoust. Soc. Am. 96(3), 18441853 (1994).
C. E. Bradley, “ Time harmonic acoustic Bloch wave propagation in periodic waveguides. Part II. Experiment,” J. Acoust. Soc. Am. 96(3), 18541862 (1994).
W. M. Robertson and J. F. Rudy III, “ Measurement of acoustic stop bands in two-dimensional periodic scattering arrays,” J. Acoust. Soc. Am. 104(2), 694699 (1998).
Z.-G. Huang and T.-T. Wu, “ Temperature effect on the bandgaps of surface and bulk acoustic waves in two-dimensional phononic crystals,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52(3), 365370 (2005).
Y. Cheng, X. J. Liu, and D. J. Wu, “ Temperature effects on the band gaps of Lamb waves in a one-dimensional phononic-crystal plate (L),” J. Acoust. Soc. Am. 129(3), 11571160 (2011).
J.-Y. Yeh, “ Control analysis of the tunable phononic crystal with electrorheological material,” Physica B 400(1-2), 137144 (2007).
K. Bertoldi and M. C. Boyce, “ Mechanically triggered transformations of phononic band gaps in periodic elastomeric structures,” Phys. Rev. B 77, 052105 (2008).
H. Pichard, O. Richoux, and J. P. Groby, “ Experimental demonstrations in audible frequency range of band gap tunability and negative refraction in two-dimensional sonic crystal,” J. Acoust. Soc. Am. 132(4), 28162822 (2012).
M. Meidani, E. Kim, F. Li, J. Yang, and D. Ngo, “ Tunable evolutions of wave modes and bandgaps in quasi-1D cylindrical phononic crystals,” J. Sound Vib. 334, 270281 (2015).
X.-Y. Zou, Q. Chen, and J.-C. Cheng, “ The band gaps of plate-mode waves in one-dimensional piezoelectric composite plates: Polarizations and boundary conditions,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54(7), 14301436 (2007).
O. Bou Matar, J. F. Robillard, J. O. Vasseur, A.-C. Hladky-Hennion, P. A. Deymier, P. Pernod, and V. Preobrazhensky, “ Band gap tunability of magneto-elastic phononic crystal,” J. Appl. Phys. 111, 054901 (2012).
S. Degraeve, C. Granger, B. Dubus, J. O. Vasseur, M. Pham Thi, and A.-C. Hladky-Hennion, “ Bragg band gaps tunability in an homogeneous piezoelectric rod with periodic electrical boundary conditions,” J. Appl. Phys. 115, 194508 (2014).
M.-F. Ponge, B. Dubus, C. Granger, J. O. Vasseur, M. Pham Thi, and A.-C. Hladky-Hennion, “ Theoretical and experimental analyses of tunable Fabry-Perot resonators using piezoelectric phononic crystals,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 62(6), 11141121 (2015).
S. Degraeve, C. Granger, J. O. Vasseur, B. Dubus, M. Pham Thi, and A.-C. Hladky-Hennion, “ Tunability of Bragg band gaps in one-dimensional piezoelectric phononic crystals using external capacitances,” Smart Mater. Struct. 24(8), 085013 (2015).
O. B. Wilson, Introduction on the Theory and Design of Sonar Transducers ( Peninsula Publishing, Los Altos, 1988), pp. 4042.
R. E. Newnham, D. P. Skinner, and L. E. Cross, “ Connectivity and piezoelectric-pyroelectric composites,” Mat. Res. Bull. 13(5), 525536 (1978).
T. R. Gururaja, W. A. Schulze, L. E. Cross, R. E. Newnham, B. A. Auld, and Y. J. Wang, “ Piezoelectric composite materials for ultrasonic transducer applications. Part I: Resonant modes of vibration of PZT rod-polymer composites,” IEEE Trans. Son. Ultrason. 32(4), 481498 (1985).
H. P. Savakus, K. A. Klicker, and R. E. Newnham, “ PZT-epoxy piezoelectric transducers: A simplified fabrication procedure,” Mat. Res. Bull. 16(6), 677680 (1981).
A.-C. Hladky-Hennion and J.-N. Decarpigny, “ Finite element modeling of active periodic structures: Application to 1-3 piezocomposites,” J. Acoust. Soc. Am. 94, 621635 (1993).
G. Hayward and J. Bennett, “ Assessing the influence of pillar aspect ratio on the behavior of 1-3 connectivity composite transducers,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 43(1), 98108 (1996).
W. A. Smith and B. A. Auld, “ Modeling 1-3 composite piezoelectrics: Thickness mode oscillations,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 38(1), 4047 (1991).
F. Levassort, M. Lethiecq, D. Certon, and F. Patat, “ A matrix method for modeling electroelastic moduli of 0-3 piezo-composites,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 44(2), 445452 (1997).
For the E501 polymer see M. Pham Thi, Anne-Christine Hladky-Hennion, Hung Le Khanh, Louis-Pascal Tran-Huu-Hue, Marc Lethiecq, and Franck Levassort, “ Large area 0-3 and 1-3 piezoelectric composites based on single crystal PMN-PT for transducer applications,” Phys. Proc. 3(1), 897904 (2010).
atila, Finite-element software package for the analysis of 2D and 3D structures based on smart materials (2010).
A. A. Kutsenko, A. L. Shuvalov, O. Poncelet, and A. N. Darinskii, “ Tunable effective constants of the one-dimensional piezoelectric phononic crystal with internal connected electrodes,” J. Acoust. Soc. Am. 137, 606616 (2015).
Kapton is a registered trademark of E. I. du Pont de Nemours and Company.
S. Degraeve, C. Granger, B. Dubus, J. O. Vasseur, M. Pham Thi, and A.-C. Hladky-Hennion, “ Tunability of a one-dimensional elastic/piezoelectric phononic crystal using external capacitances,” Acta Acust. Acust. 101(3), 494501 (2015).
X. Huo, R. Zhang, L. Zheng, S. Zhang, R. Wang, J. Wang, S. Sang, B. Yang, and W. Cao, “ (K, Na, Li)(Nb, Ta)O3:Mn lead-free single crystal with high piezoelectric properties,” J. Am. Ceram. Soc. 98(6), 18291835 (2015).

Data & Media loading...


Article metrics loading...



Phononic crystals made of piezoelectric composites with 1–3 connectivity are studied theoretically and experimentally. It is shown that they present Bragg band gaps that depend on the periodic electrical boundary conditions. These structures have improved properties compared to phononic crystals composed of bulk piezoelectric elements, especially the existence of larger band gaps and the fact that they do not require severe constraints on their aspect ratios. Experimental results present an overall agreement with the theoretical predictions and clearly show that the pass bands and stop bands of the device under study are easily tunable by only changing the electrical boundary conditions applied on each piezocomposite layer.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd