Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/asa/journal/jasa/139/6/10.1121/1.4950728
1.
J. B. Pendry, “ Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966 (2000).
http://dx.doi.org/10.1103/PhysRevLett.85.3966
2.
Z. Jacob, L. V. Alekseyev, and E. Narimanov, “ Optical hyperlens: Far-field imaging beyond the diffraction limit,” Opt. Express 14, 82478256 (2006).
http://dx.doi.org/10.1364/OE.14.008247
3.
M. Ambati, N. Fang, C. Sun, and X. Zhang, “ Surface resonant states and superlensing in acoustic metamaterials,” Phys. Rev. B 75, 195447 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.195447
4.
H. Jia, M. Ke, R. Hao, Y. Ye, F. Liu, and Z. Liu, “ Subwavelength imaging by a simple planar acoustic superlens,” Appl. Phys. Lett. 97, 173507 (2010).
http://dx.doi.org/10.1063/1.3507893
5.
J. Zhu, J. Christensen, J. Jung, L. Martin-Moreno, X. Yin, L. Fok, X. Zhang, and F. J. Garcia-Vidal, “ A holey-structured metamaterial for acoustic deep-subwavelength imaging,” Nat. Phys. 7, 5255 (2011).
http://dx.doi.org/10.1038/nphys1804
6.
X. Zhou and G. Hu, “ Superlensing effect of an anisotropic metamaterial slab with near-zero dynamic mass,” Appl. Phys. Lett. 98, 263510 (2011).
http://dx.doi.org/10.1063/1.3607277
7.
A. Liu, X. Zhou, G. Huang, and G. Hu, “ Super-resolution imaging by resonant tunneling in anisotropic acoustic metamaterials,” J. Acoust. Soc. Am. 132, 28002806 (2012).
http://dx.doi.org/10.1121/1.4744932
8.
N. Kaina, F. Lemoult, M. Fink, and G. Lerosey, “ Negative refractive index and acoustic superlens from multiple scattering in single negative metamaterials,” Nature 525, 7781 (2015).
http://dx.doi.org/10.1038/nature14678
9.
J. Christensen and F. J. Garcia de Abajo, “ Anisotropic metamaterials for full control of acoustic waves,” Phys. Rev. Lett. 108, 124301 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.124301
10.
V. M. Garcia-Chocano, J. Christensen, and J. Sánchez-Dehesa, “ Negative refraction and energy funneling by hyperbolic materials: An experimental demonstration in acoustics,” Phys. Rev Lett. 112, 144301 (2014).
http://dx.doi.org/10.1103/PhysRevLett.112.144301
11.
J. Li, L. Fok, X. Yin, G. Bartal, and X. Zhang, “ Experimental demonstration of an acoustic magnifying hyperlens,” Nat. Mater. 8, 931934 (2009).
http://dx.doi.org/10.1038/nmat2561
12.
C. Shen, Y. Xie, N. Sui, W. Wang, S. A. Cummer, and Y. Jing, “ Broadband acoustic hyperbolic metamaterial,” Phys. Rev. Lett. 115, 254301 (2015).
http://dx.doi.org/10.1103/PhysRevLett.115.254301
13.
X. Ao and C. T. Chan, “ Far-field image magnification for acoustic waves using anisotropic acoustic metamaterials,” Phys. Rev. E 77, 025601 (2008).
http://dx.doi.org/10.1103/PhysRevE.77.025601
14.
T. Chiang, L. Wu, C. Tsai, and L. Chen, “ A multilayered acoustic hyperlens with acoustic metamaterials,” Appl. Phys. A 103, 355359 (2011).
http://dx.doi.org/10.1007/s00339-011-6306-3
15.
D. Lu and Z. Liu, “ Hyperlenses and metalenses for far-field super-resolution imaging,” Nat. Commun. 3, 1205 (2012).
http://dx.doi.org/10.1038/ncomms2176
16.
Z. Liu, X. Zhang, Y. Mao, Y. Y. Zhu, Z. Yang, C. T. Chan, and P. Sheng, “ Locally resonant sonic materials,” Science 289, 17341736 (2000).
http://dx.doi.org/10.1126/science.289.5485.1734
17.
H. H. Huang, C. T. Sun, and G. L. Huang, “ On the negative effective mass density in acoustic metamaterials,” Int. J. Eng. Sci. 47, 610617 (2009).
http://dx.doi.org/10.1016/j.ijengsci.2008.12.007
18.
X. M. Zhou and G. K. Hu, “ Analytic model of elastic metamaterials with local resonances,” Phys. Rev. B 79, 195109 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.195109
19.
N. Fang, D. Xi, J. Xu, M. Ambati, W. Srituravanich, C. Sun, and X. Zhang, “ Ultrasonic metamaterials with negative modulus,” Nat. Mater. 5, 452456 (2006).
http://dx.doi.org/10.1038/nmat1644
20.
G. W. Milton and J. R. Willis, “ On modifications of Newton's second law and linear continuum elastodynamics,” Proc. R. Soc. A 463, 855880 (2007).
http://dx.doi.org/10.1098/rspa.2006.1795
21.
H. H. Huang and C. T. Sun, “ Locally resonant acoustic metamaterials with 2D anisotropic effective mass density,” Philos. Mag. 91, 981996 (2011).
http://dx.doi.org/10.1080/14786435.2010.536174
22.
R. Zhu, X. N. Liu, G. L. Huang, H. H. Huang, and C. T. Sun, “ Microstructural design and experimental validation of elastic metamaterial plates with anisotropic mass density,” Phys. Rev. B 86, 144307 (2012).
http://dx.doi.org/10.1103/PhysRevB.86.144307
23.
T. Bückmann, M. Kadic, R. Schittny, and M. Wegener, “ Mechanical metamaterials with anisotropic and negative effective mass-density tensor made from one constituent material,” Phys. Status Solidi B 252, 16711674 (2015).
http://dx.doi.org/10.1002/pssb.201451698
24.
X. Yan, R. Zhu, G. L. Huang, and F. G. Yuan, “ Focusing guided waves using surface bonded elastic metamaterials,” Appl. Phys. Lett. 103, 121901 (2013).
http://dx.doi.org/10.1063/1.4821258
25.
Y. Y. Chen, J. Hu, and G. L. Huang, “ A design of active elastic metamaterials for control of flexural waves using the transformation method,” J. Intell. Mater. Syst. Struct. (2015).
http://dx.doi.org/10.1177/1045389X15590273
26.
X. N. Liu, G. K. Hu, G. L. Huang, and C. T. Sun, “ An elastic metamaterial with simultaneously negative mass density and bulk modulus,” Appl. Phys. Lett. 98, 251907 (2011).
http://dx.doi.org/10.1063/1.3597651
27.
R. Zhu, X. N. Liu, G. K. Hu, G. L. Huang, and C. T. Sun, “ Negative refraction of elastic waves at the deep-subwavelength scale in a single-phase metamaterial,” Nat. Commun. 5, 5510 (2014).
http://dx.doi.org/10.1038/ncomms6510
28.
X. M. Zhou, M. B. Assouar, and M. Oudich, “ Acoustic superfocusing by solid phononic crystals,” Appl. Phys. Lett. 105, 233506 (2014).
http://dx.doi.org/10.1063/1.4904262
29.
H. J. Lee, H. W. Kim, and Y. Y. Kim, “ Far-field subwavelength imaging for ultrasonic elastic waves in a plate using an elastic hyperlens,” Appl. Phys. Lett. 98, 241912 (2011).
http://dx.doi.org/10.1063/1.3600634
30.
J. H. Oh, H. M. Seung, and Y. Y. Kim, “ A truly hyperbolic elastic metamaterial lens,” Appl. Phys. Lett. 104, 073503 (2014).
http://dx.doi.org/10.1063/1.4865907
31.
D. J. Colquitt, I. S. Jones, N. V. Movchan, A. B. Movchan, and R. C. McPhedran, “ Dynamic anisotropy and localization in elastic lattice systems,” Waves Random Complex Media 22, 143159 (2012).
http://dx.doi.org/10.1080/17455030.2011.633940
32.
D. J. Colquitt, I. S. Jones, N. V. Movchan, and A. B. Movchan, “ Dispersion and localization of elastic waves in materials with microstructure,” Proc. R. Soc. London A 467, 28742895 (2011).
http://dx.doi.org/10.1098/rspa.2011.0126
33.
T. Antonakakis, R. V. Craster, and S. Guenneau, “ Homogenization for elastic photonic crystals and dynamic anisotropy,” J. Mech. Phys. Solids 71, 8496 (2014).
http://dx.doi.org/10.1016/j.jmps.2014.06.006
34.
X. N. Liu, G. K. Hu, C. T. Sun, and G. L. Huang, “ Wave propagation characterization and design of two-dimensional elastic chiral metacomposite,” J. Sound Vib. 330, 25362553 (2011).
http://dx.doi.org/10.1016/j.jsv.2010.12.014
35.
J. L. Rose, Ultrasonic Waves in Solid Media ( Cambridge University Press, New York, 1999), pp. 2439.
36.
D. Torrent and J. Sanchez-Dehesa, “ Acoustic metamaterial for new two-dimensional sonic device,” New J. Phys. 9, 323 (2007).
http://dx.doi.org/10.1088/1367-2630/9/9/323
37.
Y. Y. Chen, G. L. Huang, and C. T. Sun, “ Band gap control in an active elastic metamaterial with negative capacitance piezoelectric shunting,” ASME J. Vib. Acoust. 136, 061008 (2014).
http://dx.doi.org/10.1115/1.4028378
38.
R. Zhu, Y. Y. Chen, M. V. Barnhart, G. K. Hu, C. T. Sun, and G. L. Huang, “ Experimental study of an adaptive elastic metamaterial controlled by electric circuits,” Appl. Phys. Lett. 108, 011905 (2016).
http://dx.doi.org/10.1063/1.4939546
http://aip.metastore.ingenta.com/content/asa/journal/jasa/139/6/10.1121/1.4950728
Loading
/content/asa/journal/jasa/139/6/10.1121/1.4950728
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/asa/journal/jasa/139/6/10.1121/1.4950728
2016-06-30
2016-12-10

Abstract

Wave propagation can be manipulated at a deep subwavelength scale through the locally resonant metamaterial that possesses unusual effective material properties. Hyperlens due to metamaterial's anomalous anisotropy can lead to superior-resolution imaging. In this paper, a single-phase elastic metamaterial with strongly anisotropic effective mass density has been designed. The proposed metamaterial utilizes the independently adjustable locally resonant motions of the subwavelength-scale microstructures along the two principal directions. High anisotropy in the effective mass densities obtained by the numerical-based effective medium theory can be found and even have opposite signs. For practical applications, shunted piezoelectric elements are introduced into the microstructure to tailor the effective mass density in a broad frequency range. Finally, to validate the design, an elastic hyperlens made of the single-phase hyperbolic metamaterial is proposed with subwavelength longitudinal wave imaging illustrated numerically. The proposed single-phase hyperbolic metamaterial has many promising applications for high resolution damage imaging in nondestructive evaluation and structural health monitoring.

Loading

Full text loading...

/deliver/fulltext/asa/journal/jasa/139/6/1.4950728.html;jsessionid=OKGLaR0TLKeWfymWWSgEDovp.x-aip-live-06?itemId=/content/asa/journal/jasa/139/6/10.1121/1.4950728&mimeType=html&fmt=ahah&containerItemId=content/asa/journal/jasa
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=asadl.org/jasa/139/6/10.1121/1.4950728&pageURL=http://scitation.aip.org/content/asa/journal/jasa/139/6/10.1121/1.4950728'
Right1,Right2,Right3,