Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
J. B. Pendry, “ Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966 (2000).
Z. Jacob, L. V. Alekseyev, and E. Narimanov, “ Optical hyperlens: Far-field imaging beyond the diffraction limit,” Opt. Express 14, 82478256 (2006).
M. Ambati, N. Fang, C. Sun, and X. Zhang, “ Surface resonant states and superlensing in acoustic metamaterials,” Phys. Rev. B 75, 195447 (2007).
H. Jia, M. Ke, R. Hao, Y. Ye, F. Liu, and Z. Liu, “ Subwavelength imaging by a simple planar acoustic superlens,” Appl. Phys. Lett. 97, 173507 (2010).
J. Zhu, J. Christensen, J. Jung, L. Martin-Moreno, X. Yin, L. Fok, X. Zhang, and F. J. Garcia-Vidal, “ A holey-structured metamaterial for acoustic deep-subwavelength imaging,” Nat. Phys. 7, 5255 (2011).
X. Zhou and G. Hu, “ Superlensing effect of an anisotropic metamaterial slab with near-zero dynamic mass,” Appl. Phys. Lett. 98, 263510 (2011).
A. Liu, X. Zhou, G. Huang, and G. Hu, “ Super-resolution imaging by resonant tunneling in anisotropic acoustic metamaterials,” J. Acoust. Soc. Am. 132, 28002806 (2012).
N. Kaina, F. Lemoult, M. Fink, and G. Lerosey, “ Negative refractive index and acoustic superlens from multiple scattering in single negative metamaterials,” Nature 525, 7781 (2015).
J. Christensen and F. J. Garcia de Abajo, “ Anisotropic metamaterials for full control of acoustic waves,” Phys. Rev. Lett. 108, 124301 (2012).
V. M. Garcia-Chocano, J. Christensen, and J. Sánchez-Dehesa, “ Negative refraction and energy funneling by hyperbolic materials: An experimental demonstration in acoustics,” Phys. Rev Lett. 112, 144301 (2014).
J. Li, L. Fok, X. Yin, G. Bartal, and X. Zhang, “ Experimental demonstration of an acoustic magnifying hyperlens,” Nat. Mater. 8, 931934 (2009).
C. Shen, Y. Xie, N. Sui, W. Wang, S. A. Cummer, and Y. Jing, “ Broadband acoustic hyperbolic metamaterial,” Phys. Rev. Lett. 115, 254301 (2015).
X. Ao and C. T. Chan, “ Far-field image magnification for acoustic waves using anisotropic acoustic metamaterials,” Phys. Rev. E 77, 025601 (2008).
T. Chiang, L. Wu, C. Tsai, and L. Chen, “ A multilayered acoustic hyperlens with acoustic metamaterials,” Appl. Phys. A 103, 355359 (2011).
D. Lu and Z. Liu, “ Hyperlenses and metalenses for far-field super-resolution imaging,” Nat. Commun. 3, 1205 (2012).
Z. Liu, X. Zhang, Y. Mao, Y. Y. Zhu, Z. Yang, C. T. Chan, and P. Sheng, “ Locally resonant sonic materials,” Science 289, 17341736 (2000).
H. H. Huang, C. T. Sun, and G. L. Huang, “ On the negative effective mass density in acoustic metamaterials,” Int. J. Eng. Sci. 47, 610617 (2009).
X. M. Zhou and G. K. Hu, “ Analytic model of elastic metamaterials with local resonances,” Phys. Rev. B 79, 195109 (2009).
N. Fang, D. Xi, J. Xu, M. Ambati, W. Srituravanich, C. Sun, and X. Zhang, “ Ultrasonic metamaterials with negative modulus,” Nat. Mater. 5, 452456 (2006).
G. W. Milton and J. R. Willis, “ On modifications of Newton's second law and linear continuum elastodynamics,” Proc. R. Soc. A 463, 855880 (2007).
H. H. Huang and C. T. Sun, “ Locally resonant acoustic metamaterials with 2D anisotropic effective mass density,” Philos. Mag. 91, 981996 (2011).
R. Zhu, X. N. Liu, G. L. Huang, H. H. Huang, and C. T. Sun, “ Microstructural design and experimental validation of elastic metamaterial plates with anisotropic mass density,” Phys. Rev. B 86, 144307 (2012).
T. Bückmann, M. Kadic, R. Schittny, and M. Wegener, “ Mechanical metamaterials with anisotropic and negative effective mass-density tensor made from one constituent material,” Phys. Status Solidi B 252, 16711674 (2015).
X. Yan, R. Zhu, G. L. Huang, and F. G. Yuan, “ Focusing guided waves using surface bonded elastic metamaterials,” Appl. Phys. Lett. 103, 121901 (2013).
Y. Y. Chen, J. Hu, and G. L. Huang, “ A design of active elastic metamaterials for control of flexural waves using the transformation method,” J. Intell. Mater. Syst. Struct. (2015).
X. N. Liu, G. K. Hu, G. L. Huang, and C. T. Sun, “ An elastic metamaterial with simultaneously negative mass density and bulk modulus,” Appl. Phys. Lett. 98, 251907 (2011).
R. Zhu, X. N. Liu, G. K. Hu, G. L. Huang, and C. T. Sun, “ Negative refraction of elastic waves at the deep-subwavelength scale in a single-phase metamaterial,” Nat. Commun. 5, 5510 (2014).
X. M. Zhou, M. B. Assouar, and M. Oudich, “ Acoustic superfocusing by solid phononic crystals,” Appl. Phys. Lett. 105, 233506 (2014).
H. J. Lee, H. W. Kim, and Y. Y. Kim, “ Far-field subwavelength imaging for ultrasonic elastic waves in a plate using an elastic hyperlens,” Appl. Phys. Lett. 98, 241912 (2011).
J. H. Oh, H. M. Seung, and Y. Y. Kim, “ A truly hyperbolic elastic metamaterial lens,” Appl. Phys. Lett. 104, 073503 (2014).
D. J. Colquitt, I. S. Jones, N. V. Movchan, A. B. Movchan, and R. C. McPhedran, “ Dynamic anisotropy and localization in elastic lattice systems,” Waves Random Complex Media 22, 143159 (2012).
D. J. Colquitt, I. S. Jones, N. V. Movchan, and A. B. Movchan, “ Dispersion and localization of elastic waves in materials with microstructure,” Proc. R. Soc. London A 467, 28742895 (2011).
T. Antonakakis, R. V. Craster, and S. Guenneau, “ Homogenization for elastic photonic crystals and dynamic anisotropy,” J. Mech. Phys. Solids 71, 8496 (2014).
X. N. Liu, G. K. Hu, C. T. Sun, and G. L. Huang, “ Wave propagation characterization and design of two-dimensional elastic chiral metacomposite,” J. Sound Vib. 330, 25362553 (2011).
J. L. Rose, Ultrasonic Waves in Solid Media ( Cambridge University Press, New York, 1999), pp. 2439.
D. Torrent and J. Sanchez-Dehesa, “ Acoustic metamaterial for new two-dimensional sonic device,” New J. Phys. 9, 323 (2007).
Y. Y. Chen, G. L. Huang, and C. T. Sun, “ Band gap control in an active elastic metamaterial with negative capacitance piezoelectric shunting,” ASME J. Vib. Acoust. 136, 061008 (2014).
R. Zhu, Y. Y. Chen, M. V. Barnhart, G. K. Hu, C. T. Sun, and G. L. Huang, “ Experimental study of an adaptive elastic metamaterial controlled by electric circuits,” Appl. Phys. Lett. 108, 011905 (2016).

Data & Media loading...


Article metrics loading...



Wave propagation can be manipulated at a deep subwavelength scale through the locally resonant metamaterial that possesses unusual effective material properties. Hyperlens due to metamaterial's anomalous anisotropy can lead to superior-resolution imaging. In this paper, a single-phase elastic metamaterial with strongly anisotropic effective mass density has been designed. The proposed metamaterial utilizes the independently adjustable locally resonant motions of the subwavelength-scale microstructures along the two principal directions. High anisotropy in the effective mass densities obtained by the numerical-based effective medium theory can be found and even have opposite signs. For practical applications, shunted piezoelectric elements are introduced into the microstructure to tailor the effective mass density in a broad frequency range. Finally, to validate the design, an elastic hyperlens made of the single-phase hyperbolic metamaterial is proposed with subwavelength longitudinal wave imaging illustrated numerically. The proposed single-phase hyperbolic metamaterial has many promising applications for high resolution damage imaging in nondestructive evaluation and structural health monitoring.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd