Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/asa/journal/jasa/139/6/10.1121/1.4950751
1.
V. G. Veselago, “ The electrodynamics of substances with simultaneously negative values of the dielectric constant and the magnetic permeability,” Sov. Phys. Usp. 10(4), 517526 (1968).
2.
J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “ Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47(11), 20752084 (1999).
http://dx.doi.org/10.1109/22.798002
3.
J. B. Pendry, “ Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 39663969 (2000).
http://dx.doi.org/10.1103/PhysRevLett.85.3966
4.
D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “ Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977980 (2006).
http://dx.doi.org/10.1126/science.1133628
5.
Y. Cui, K. H. Fung, J. Xu, Y. Jin, S. He, and N. X. Fang, “ Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12, 14431447 (2012).
http://dx.doi.org/10.1021/nl204118h
6.
Z. Liu, X. Zhang, Y. Mao, Y. Y. Zhu, Z. Yang, C. T. Chan, and N. Series, “ Locally resonant sonic materials,” Science 289, 17341736 (2000).
http://dx.doi.org/10.1126/science.289.5485.1734
7.
N. Fang, D. Xi, J. Xu, M. Ambati, W. Srituravanich, C. Sun, and X. Zhang, “ Ultrasonic metamaterials with negative modulus,” Nat. Mater 5(6), 452456 (2006).
http://dx.doi.org/10.1038/nmat1644
8.
G. Ma and P. Sheng, “ Acoustic metamaterials: From local resonances to broad horizons,” Sci. Adv. 2(2), e1501595 (2016).
http://dx.doi.org/10.1126/sciadv.1501595
9.
Y. Wu, Y. Lai, and Z.-Q. Zhang, “ Elastic metamaterials with simultaneously negative effective shear modulus and mass density,” Phys. Rev. Lett. 107(10), 105506 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.105506
10.
R. Zhu, X. N. Liu, G. K. Hu, C. T. Sun, and G. L. Huang, “ Negative refraction of elastic waves at the deep-subwavelength scale in a single-phase metamaterial,” Nat. Commun. 5, 5510 (2014).
http://dx.doi.org/10.1038/ncomms6510
11.
R. Zhu, X. N. Liu, G. K. Hu, F. G. Yuan, and G. L. Huang, “ Microstructural designs of plate-type elastic metamaterial and their potential applications: A review,” Int. J. Smart Nano Mater. 6(1), 1440 (2015).
http://dx.doi.org/10.1080/19475411.2015.1025249
12.
L. Zigoneanu, B. Popa, and S. A. Cummer, “ Three-dimensional broadband omnidirectional acoustic ground cloak,” Nat. Mater. 13, 352355 (2014).
http://dx.doi.org/10.1038/nmat3901
13.
N. Kaina, F. Lemoult, M. Fink, and G. Lerosey, “ Negative refractive index and acoustic superlens from multiple scattering in single negative metamaterials,” Nature 525, 7781 (2015).
http://dx.doi.org/10.1038/nature14678
14.
Y. Xie, W. Wang, H. Chen, A. Konneker, B.-I. Popa, and S. A. Cummer, “ Wavefront modulation and subwavelength diffractive acoustics with an acoustic metasurface,” Nat. Commun. 5, 5553 (2014).
http://dx.doi.org/10.1038/ncomms6553
15.
B. Liang, B. Yuan, and J. Cheng, “ Acoustic diode: Rectification of acoustic energy flux in one-dimensional systems,” Phys. Rev. Lett. 103(10), 104301 (2009).
http://dx.doi.org/10.1103/PhysRevLett.103.104301
16.
Y. Li, B. Liang, X. Tao, X. Zhu, X. Zou, and J. Cheng, “ Acoustic focusing by coiling up space,” Appl. Phys. Lett. 101(23), 233508 (2012).
http://dx.doi.org/10.1063/1.4769984
17.
S. H. Lee, C. M. Park, Y. M. Seo, Z. G. Wang, and C. K. Kim, “ Composite acoustic medium with simultaneously negative density and modulus,” Phys. Rev. Lett. 104(5), 054301 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.054301
18.
R. Fleury and A. Alù, “ Extraordinary sound transmission through density-near-zero ultranarrow channels,” Phys. Rev. Lett. 111(5), 055501 (2013).
http://dx.doi.org/10.1103/PhysRevLett.111.055501
19.
C. Shen, J. Xu, N. X. Fang, and Y. Jing, “ Anisotropic complementary acoustic metamaterial for canceling out aberrating layers,” Phys. Rev. X 4(4), 041033 (2014).
http://dx.doi.org/10.1103/PhysRevX.4.041033
20.
P. Sheng, X. X. Zhang, Z. Liu, and C. T. Chan, “ Locally resonant sonic materials,” Phys. B Condens. Matter 338(1–4), 201205 (2003).
http://dx.doi.org/10.1016/S0921-4526(03)00487-3
21.
B.-I. Popa, L. Zigoneanu, and S. A. Cummer, “ Experimental acoustic ground cloak in air,” Phys. Rev. Lett. 106(25), 253901 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.253901
22.
Z. Liang and J. Li, “ Extreme acoustic metamaterial by coiling up space,” Phys. Rev. Lett. 108(11), 114301 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.114301
23.
Y. Xie, B. I. Popa, L. Zigoneanu, and S. A. Cummer, “ Measurement of a broadband negative index with space-coiling acoustic metamaterials,” Phys. Rev. Lett. 110(17), 175501 (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.175501
24.
Z. Liang, T. Feng, S. Lok, F. Liu, K. B. Ng, C. H. Chan, J. Wang, S. Han, S. Lee, and J. Li, “ Space-coiling metamaterials with double negativity and conical dispersion,” Sci. Rep. 3, 1614 (2013).
http://dx.doi.org/10.1038/srep01614
25.
Y. Li, B. Liang, Z. Gu, X. Zou, and J. Cheng, “ Reflected wavefront manipulation based on ultrathin planar acoustic metasurfaces,” Sci. Rep. 3, 2546 (2013).
http://dx.doi.org/10.1038/srep02546
26.
C. M. Park, J. J. Park, S. H. Lee, Y. M. Seo, C. K. Kim, and S. H. Lee, “ Amplification of acoustic evanescent waves using metamaterial slabs,” Phys. Rev. Lett. 107(19), 194301 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.194301
27.
S. H. Lee, C. M. Park, Y. M. Seo, Z. G. Wang, and C. K. Kim, “ Acoustic metamaterial with negative density,” Phys. Lett. A 373(48), 44644469 (2009).
http://dx.doi.org/10.1016/j.physleta.2009.10.013
28.
N. Sui, X. Yan, T. Y. Huang, J. Xu, F. G. Yuan, and Y. Jing, “ A lightweight yet sound-proof honeycomb acoustic metamaterial,” Appl. Phys. Lett. 106(17), 171905 (2015).
http://dx.doi.org/10.1063/1.4919235
29.
S. Yao, X. Zhou, and G. Hu, “ Investigation of the negative-mass behaviors occurring below a cut-off frequency,” New J. Phys. 12, 103025 (2010).
http://dx.doi.org/10.1088/1367-2630/12/10/103025
30.
P. Li, X. Chen, X. Zhou, G. Hu, and P. Xiang, “ Acoustic cloak constructed with thin-plate metamaterials,” Int. J. Smart Nano Mater. 6(1), 7383 (2015).
http://dx.doi.org/10.1080/19475411.2015.1005722
31.
Y. Jing, J. Xu, and N. X. Fang, “ Numerical study of a near-zero-index acoustic metamaterial,” Phys. Lett. A 376(45), 28342837 (2012).
http://dx.doi.org/10.1016/j.physleta.2012.08.057
32.
X. Xu, P. Li, X. Zhou, and G. Hu, “ Experimental study on acoustic subwavelength imaging based on zero-mass metamaterials,” Europhys. Lett. 109(2), 28001 (2015).
http://dx.doi.org/10.1209/0295-5075/109/28001
33.
M. Badreddine Assouar, M. Senesi, M. Oudich, M. Ruzzene, and Z. Hou, “ Broadband plate-type acoustic metamaterial for low-frequency sound attenuation,” Appl. Phys. Lett. 101(17), 173505 (2012).
http://dx.doi.org/10.1063/1.4764072
34.
M. Badreddine Assouar and M. Oudich, “ Enlargement of a locally resonant sonic band gap by using double-sides stubbed phononic plates,” Appl. Phys. Lett. 100(12), 123506 (2012).
http://dx.doi.org/10.1063/1.3696050
35.
M. Oudich, B. Djafari-Rouhani, Y. Pennec, M. B. Assouar, and B. Bonello, “ Negative effective mass density of acoustic metamaterial plate decorated with low frequency resonant pillars,” J. Appl. Phys. 116(18), 184504 (2014).
http://dx.doi.org/10.1063/1.4901462
36.
P. Jiang, X.-P. Wang, T.-N. Chen, and J. Zhu, “ Band gap and defect state engineering in a multi-stub phononic crystal plate,” J. Appl. Phys. 117(15), 154301 (2015).
http://dx.doi.org/10.1063/1.4917565
37.
Y. Li, T. Chen, X. Wang, Y. Xi, and Q. Liang, “ Enlargement of locally resonant sonic band gap by using composite plate-type acoustic metamaterial,” Phys. Lett. A 379(5), 412416 (2015).
http://dx.doi.org/10.1016/j.physleta.2014.11.028
38.
F. Bongard, H. Lissek, and J. R. Mosig, “ Acoustic transmission line metamaterial with negative/zero/positive refractive index,” Phys. Rev. B 82(9), 094306 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.094306
39.
Z. Yang, J. Mei, M. Yang, N. H. Chan, and P. Sheng, “ Membrane-type acoustic metamaterial with negative dynamic mass,” Phys. Rev. Lett. 101(20), 204301 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.204301
40.
Y. Chen, G. Huang, X. Zhou, G. Hu, and C. T. Sun, “ Analytical coupled vibroacoustic modeling of membrane-type acoustic metamaterials: Membrane model,” J. Acoust. Soc. Am. 136(3), 969979 (2014).
http://dx.doi.org/10.1121/1.4892870
41.
Y. Chen, G. Huang, X. Zhou, G. Hu, and C. T. Sun, “ Analytical coupled vibroacoustic modeling of membrane-type acoustic metamaterials: Plate model,” J. Acoust. Soc. Am. 136(6), 29262934 (2014).
http://dx.doi.org/10.1121/1.4901706
42.
G. Ma, “ Membrane-type acoustic metamaterials,” Ph.D. thesis, The Hong Kong University of Science and Technology, 2012.
43.
S. Yao, X. Zhou, and G. Hu, “ Experimental study on negative effective mass in a 1D mass–spring system,” New J. Phys. 10(4), 043020 (2008).
http://dx.doi.org/10.1088/1367-2630/10/4/043020
44.
Z. Yang, H. M. Dai, N. H. Chan, G. C. Ma, and P. Sheng, “ Acoustic metamaterial panels for sound attenuation in the 50-1000 Hz regime,” Appl. Phys. Lett. 96(4), 041906 (2010).
http://dx.doi.org/10.1063/1.3299007
45.
C. J. Naify, C. M. Chang, G. McKnight, and S. Nutt, “ Transmission loss and dynamic response of membrane-type locally resonant acoustic metamaterials,” J. Appl. Phys. 108(11), 114905 (2010).
http://dx.doi.org/10.1063/1.3514082
46.
C. J. Naify, C. M. Chang, G. McKnight, and S. Nutt, “ Transmission loss of membrane-type acoustic metamaterials with coaxial ring masses,” J. Appl. Phys. 110(12), 124903 (2011).
http://dx.doi.org/10.1063/1.3665213
47.
C. J. Naify, C. M. Chang, G. McKnight, F. Scheulen, and S. Nutt, “ Membrane-type metamaterials: Transmission loss of multi-celled arrays,” J. Appl. Phys. 109(10), 104902 (2011).
http://dx.doi.org/10.1063/1.3583656
48.
C. J. Naify and S. R. Nutt, “ Scaling of membrane-type locally resonant acoustic metamaterial arrays,” J. Acoust. Soc. Am. 132, 27842792 (2012).
http://dx.doi.org/10.1121/1.4744941
49.
Y. Zhang, J. Wen, H. Zhao, D. Yu, L. Cai, and X. Wen, “ Sound insulation property of membrane-type acoustic metamaterials carrying different masses at adjacent cells,” J. Appl. Phys. 114(6), 063515 (2013).
http://dx.doi.org/10.1063/1.4818435
50.
Y. Zhang, J. Wen, Y. Xiao, X. Wen, and J. Wang, “ Theoretical investigation of the sound attenuation of membrane-type acoustic metamaterials,” Phys. Lett. A 376(17), 14891494 (2012).
http://dx.doi.org/10.1016/j.physleta.2012.03.010
51.
F. Langfeldt, W. Gleine, and O. von Estorff, “ Analytical model for low-frequency transmission loss calculation of membranes loaded with arbitrarily shaped masses,” J. Sound Vib. 349, 315329 (2015).
http://dx.doi.org/10.1016/j.jsv.2015.03.037
52.
H. Tian, X. Wang, and Y. Zhou, “ Theoretical model and analytical approach for a circular membrane–ring structure of locally resonant acoustic metamaterial,” Appl. Phys. A 114(3), 985990 (2014).
http://dx.doi.org/10.1007/s00339-013-8047-y
53.
J. Mei, G. Ma, M. Yang, Z. Yang, W. Wen, and P. Sheng, “ Dark acoustic metamaterials as super absorbers for low-frequency sound,” Nat. Commun. 3, 756 (2012).
http://dx.doi.org/10.1038/ncomms1758
54.
G. Ma, M. Yang, S. Xiao, Z. Yang, and P. Sheng, “ Acoustic metasurface with hybrid resonances,” Nat. Mater. 13, 873878 (2014).
http://dx.doi.org/10.1038/nmat3994
55.
M. Yang, Y. Li, C. Meng, C. Fu, J. Mei, Z. Yang, and P. Sheng, “ Sound absorption by subwavelength membrane structures: A geometric perspective,” Comptes Rendus Mécanique 343(12), 635644 (2015).
http://dx.doi.org/10.1016/j.crme.2015.06.008
56.
M. Yang, C. Meng, C. Fu, Y. Li, Z. Yang, and P. Sheng, “ Subwavelength total acoustic absorption with degenerate resonators,” Appl. Phys. Lett. 107(10), 104104 (2015).
http://dx.doi.org/10.1063/1.4930944
57.
M. Yang, G. Ma, Z. Yang, and P. Sheng, “ Coupled membranes with doubly negative mass density and bulk modulus,” Phys. Rev. Lett. 110(13), 134301 (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.134301
58.
F. Ma, J. H. Wu, M. Huang, W. Zhang, and S. Zhang, “ A purely flexible lightweight membrane-type acoustic metamaterial,” J. Phys. D. Appl. Phys. 48(17), 175105 (2015).
http://dx.doi.org/10.1088/0022-3727/48/17/175105
59.
G. Ma, M. Yang, Z. Yang, and P. Sheng, “ Low-frequency narrow-band acoustic filter with large orifice,” Appl. Phys. Lett. 103(1), 011903 (2013).
http://dx.doi.org/10.1063/1.4812974
60.
Y. Xiao, J. Wen, and X. Wen, “ Sound transmission loss of metamaterial-based thin plates with multiple subwavelength arrays of attached resonators,” J. Sound Vib. 331(25), 54085423 (2012).
http://dx.doi.org/10.1016/j.jsv.2012.07.016
61.
P. Li, S. Yao, X. Zhou, G. Huang, and G. Hu, “ Effective medium theory of thin-plate acoustic metamaterials,” J. Acoust. Soc. Am. 135(4), 18441852 (2014).
http://dx.doi.org/10.1121/1.4868400
62.
M. Oudich, X. Zhou, and M. Badreddine Assouar, “ General analytical approach for sound transmission loss analysis through a thick metamaterial plate,” J. Appl. Phys. 116(19), 193509 (2014).
http://dx.doi.org/10.1063/1.4901997
63.
V. E. Gusev and O. B. Wright, “ Double-negative flexural acoustic metamaterial,” New J. Phys. 16(12), 123053 (2014).
http://dx.doi.org/10.1088/1367-2630/16/12/123053
64.
C. Shen and Y. Jing, “ Side branch-based acoustic metamaterials with a broad-band negative bulk modulus,” Appl. Phys. A 117(4), 18851891 (2014).
http://dx.doi.org/10.1007/s00339-014-8603-0
65.
S. H. Lee, C. M. Park, Y. M. Seo, Z. G. Wang, and C. K. Kim, “ Acoustic metamaterial with negative modulus,” J. Phys. Condens. Matter 21(17), 175704 (2009).
http://dx.doi.org/10.1088/0953-8984/21/17/175704
66.
S. H. Lee, C. M. Park, Y. M. Seo, and C. K. Kim, “ Reversed Doppler effect in double negative metamaterials,” Phys. Rev. B 81(24), 241102 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.241102
67.
L. Fan, Z. Chen, Y. Deng, J. Ding, H. Ge, S. Zhang, Y. Yang, and H. Zhang, “ Nonlinear effects in a metamaterial with double negativity,” Appl. Phys. Lett. 105(4), 041904 (2014).
http://dx.doi.org/10.1063/1.4892009
68.
C. J. Naify, C. N. Layman, T. P. Martin, M. Nicholas, D. C. Calvo, and G. J. Orris, “ Experimental realization of a variable index transmission line metamaterial as an acoustic leaky-wave antenna,” Appl. Phys. Lett. 102(20), 203508 (2013).
http://dx.doi.org/10.1063/1.4807280
69.
L. Fan, S.-Y. Zhang, and H. Zhang, “ Transmission characteristics in tubular acoustic metamaterials studied with fluid impedance theory,” Chin.e Phys. Lett. 28(10), 104301 (2011).
http://dx.doi.org/10.1088/0256-307X/28/10/104301
70.
L. Fan, H. Ge, S. Zhang, and H. Zhang, “ Research on pass band with negative phase velocity in tubular acoustic metamaterial,” J. Appl. Phys. 112(5), 053523 (2012).
http://dx.doi.org/10.1063/1.4751270
71.
M. Ambati, N. Fang, C. Sun, and X. Zhang, “ Surface resonant states and superlensing in acoustic metamaterials,” Phys. Rev. B 75(19), 195447 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.195447
72.
J. J. Park, C. M. Park, K. J. B. Lee, and S. H. Lee, “ Acoustic superlens using membrane-based metamaterials,” Appl. Phys. Lett. 106(5), 051901 (2015).
http://dx.doi.org/10.1063/1.4907634
73.
C. Shen, Y. Xie, N. Sui, W. Wang, S. A. Cummer, and Y. Jing, “ Broadband acoustic hyperbolic metamaterial,” Phys. Rev. Lett. 115(25), 254301 (2015).
http://dx.doi.org/10.1103/PhysRevLett.115.254301
74.
X. Zhou and G. Hu, “ Superlensing effect of an anisotropic metamaterial slab with near-zero dynamic mass,” Appl. Phys. Lett. 98(26), 263510 (2011).
http://dx.doi.org/10.1063/1.3607277
75.
A. Liu, X. Zhou, G. Huang, and G. Hu, “ Super-resolution imaging by resonant tunneling in anisotropic acoustic metamaterials,” J. Acoust. Soc. Am. 132(4), 28002806 (2012).
http://dx.doi.org/10.1121/1.4744932
76.
J. J. Park, K. J. B. Lee, O. B. Wright, M. K. Jung, and S. H. Lee, “ Giant acoustic concentration by extraordinary transmission in zero-mass metamaterials,” Phys. Rev. Lett. 110(24), 244302 (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.244302
77.
Y. Gu, Y. Cheng, J. Wang, and X. Liu, “ Controlling sound transmission with density-near-zero acoustic membrane network,” J. Appl. Phys. 118(2), 024505 (2015).
http://dx.doi.org/10.1063/1.4922669
78.
N. R. Mahesh and P. Nair, “ Design and analysis of an acoustic demultiplexer exploiting negative density, negative bulk modulus and extra-ordinary transmission of membrane-based acoustic metamaterial,” Appl. Phys. A 116(3), 14951500 (2014).
http://dx.doi.org/10.1007/s00339-014-8278-6
79.
N. Cselyuszka, M. Sečujski, and V. Crnojević-Bengin, “ Novel negative mass density resonant metamaterial unit cell,” Phys. Lett. A 379(1–2), 3336 (2015).
http://dx.doi.org/10.1016/j.physleta.2014.10.036
80.
S. Varanasi, J. S. Bolton, T. H. Siegmund, and R. J. Cipra, “ The low frequency performance of metamaterial barriers based on cellular structures,” Appl. Acoust. 74, 485495 (2013).
http://dx.doi.org/10.1016/j.apacoust.2012.09.008
81.
S. Yao, P. Li, X. Zhou, and G. Hu, “ Sound reduction by metamaterial-based acoustic enclosure,” AIP Adv. 4(12), 124306 (2014).
http://dx.doi.org/10.1063/1.4902339
82.
Z. Liu, H. Zhang, S. Zhang, and L. Fan, “ An acoustic dual filter in the audio frequencies with two local resonant systems,” Appl. Phys. Lett. 105(5), 053501 (2014).
http://dx.doi.org/10.1063/1.4892462
83.
L. Fan, Z. Chen, S. Zhang, J. Ding, X. Li, and H. Zhang, “ An acoustic metamaterial composed of multi-layer membrane-coated perforated plates for low-frequency sound insulation,” Appl. Phys. Lett. 106(15), 151908 (2015).
http://dx.doi.org/10.1063/1.4918374
84.
A. Baz, “ The structure of an active acoustic metamaterial with tunable effective density,” New J. Phys. 11, 123010 (2009).
http://dx.doi.org/10.1088/1367-2630/11/12/123010
85.
A. M. Baz, “ An active acoustic metamaterial with tunable effective density,” J. Vib. Acoust. 132(4), 041011 (2010).
http://dx.doi.org/10.1115/1.4000983
86.
W. Akl and A. Baz, “ Multicell active acoustic metamaterial with programmable effective densities,” J. Dyn. Syst. Meas. Control 134(6), 061001 (2012).
http://dx.doi.org/10.1115/1.4006619
87.
W. Akl and A. Baz, “ Multi-cell active acoustic metamaterial with programmable bulk modulus,” J. Intell. Mater. Syst. Struct. 21(5), 541556 (2010).
http://dx.doi.org/10.1177/1045389X09359434
88.
W. Akl and A. Baz, “ Experimental characterization of active acoustic metamaterial cell with controllable dynamic density,” J. Appl. Phys. 112(8), 084912 (2012).
http://dx.doi.org/10.1063/1.4759327
89.
W. Akl and A. Baz, “ Analysis and experimental demonstration of an active acoustic metamaterial cell,” J. Appl. Phys. 111(4), 044505 (2012).
http://dx.doi.org/10.1063/1.3686210
90.
B. I. Popa, L. Zigoneanu, and S. A. Cummer, “ Tunable active acoustic metamaterials,” Phys. Rev. B 88(2), 024303 (2013).
http://dx.doi.org/10.1103/PhysRevB.88.024303
91.
B. I. Popa and S. A. Cummer, “ Non-reciprocal and highly nonlinear active acoustic metamaterials,” Nat. Commun. 5, 3398 (2014).
http://dx.doi.org/10.1038/ncomms4398
92.
B. I. Popa, D. Shinde, A. Konneker, and S. A. Cummer, “ Active acoustic metamaterials reconfigurable in real-time,” Phys. Rev. B 91, 220303 (2015).
http://dx.doi.org/10.1103/PhysRevB.91.220303
93.
H. Zhang, J. Wen, Y. Xiao, G. Wang, and X. Wen, “ Sound transmission loss of metamaterial thin plates with periodic subwavelength arrays of shunted piezoelectric patches,” J. Sound Vib. 343, 104120 (2015).
http://dx.doi.org/10.1016/j.jsv.2015.01.019
94.
W. Akl and A. Baz, “ Stability analysis of active metamaterial with programmable bulk modulus,” Smart Mater. Struct. 20, 125010 (2011).
http://dx.doi.org/10.1088/0964-1726/20/12/125010
95.
W. Akl and A. Baz, “ Active acoustic metamaterial with simultaneously programmable density and bulk modulus,” J. Vib. Acoust. 135(3), 031001 (2013).
http://dx.doi.org/10.1115/1.4023141
96.
W. Akl and A. Elsabbagh, “ Acoustic metamaterials with circular sector cavities and programmable densities,” J. Acoust. Soc. Am. 132, 28572865 (2012).
http://dx.doi.org/10.1121/1.4744936
97.
X. Chen, X. Xu, S. Ai, H. Chen, Y. Pei, and X. Zhou, “ Active acoustic metamaterials with tunable effective mass density by gradient magnetic fields,” Appl. Phys. Lett. 105(7), 071913 (2014).
http://dx.doi.org/10.1063/1.4893921
98.
S. Xiao, G. Ma, Y. Li, Z. Yang, and P. Sheng, “ Active control of membrane-type acoustic metamaterial by electric field,” Appl. Phys. Lett. 106(9), 091904 (2015).
http://dx.doi.org/10.1063/1.4913999
99.
H. Lissek, “ Electroacoustic metamaterials: Achieving negative acoustic properties with shunt loudspeakers,” Proc. Mtgs. Acoust. 19, 030023 (2013).
http://dx.doi.org/10.1121/1.4799335
100.
R. Fleury, D. Sounas, and A. Alù, “ An invisible acoustic sensor based on parity-time symmetry,” Nat. Commun. 6, 5905 (2015).
http://dx.doi.org/10.1038/ncomms6905
101.
S. Zhang, L. Yin, and N. Fang, “ Focusing ultrasound with an acoustic metamaterial network,” Phys. Rev. Lett. 102(19), 194301 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.194301
http://aip.metastore.ingenta.com/content/asa/journal/jasa/139/6/10.1121/1.4950751
Loading
/content/asa/journal/jasa/139/6/10.1121/1.4950751
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/asa/journal/jasa/139/6/10.1121/1.4950751
2016-06-30
2016-12-08

Abstract

Over the past decade there has been a great amount of research effort devoted to the topic of acoustic metamaterials (AMMs). The recent development of AMMs has enlightened the way of manipulating sound waves. Several potential applications such as low-frequency noise reduction, cloaking, angular filtering, subwavelength imaging, and energy tunneling have been proposed and implemented by the so-called membrane- or plate-type AMMs. This paper aims to offer a thorough overview on the recent development of membrane- or plate-type AMMs. The underlying mechanism of these types of AMMs for tuning the effective density will be examined first. Four different groups of membrane- or plate-type AMMs (membranes with masses attached, plates with masses attached, membranes or plates without masses attached, and active AMMs) will be reviewed. The opportunities, limitations, and challenges of membrane- or plate-type AMMs will be also discussed.

Loading

Full text loading...

/deliver/fulltext/asa/journal/jasa/139/6/1.4950751.html;jsessionid=LHUrMah6wDnGzWcWejcntBWC.x-aip-live-02?itemId=/content/asa/journal/jasa/139/6/10.1121/1.4950751&mimeType=html&fmt=ahah&containerItemId=content/asa/journal/jasa
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=asadl.org/jasa/139/6/10.1121/1.4950751&pageURL=http://scitation.aip.org/content/asa/journal/jasa/139/6/10.1121/1.4950751'
Right1,Right2,Right3,