Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
S. A. Cummer and D. Schurig, “ One path to acoustic cloaking,” New J. Phys. 9, 45 (2007).
H. Chen and C. T. Chan, “ Acoustic cloaking in three dimensions using acoustic metamaterials,” Appl. Phys. Lett. 91, 183518 (2007).
A. N. Norris, “ Acoustic cloaking theory,” Proc. R. Soc. A 464, 24112434 (2008).
Z. Liu, X. Zhang, Y. Mao, Y. Y. Zhu, Z. Yang, C. T. Chan, and P. Sheng, “ Locally resonant sonic materials,” Science 289, 17341736 (2000).
N. Fang, D. Xi, J. Xu, M. Ambati, W. Srituravanich, C. Sun, and X. Zhang, “ Ultrasonic materials with negative modulus,” Nat. Mater. 5, 452456 (2006).
D. Torrent and J. Sanchez-Dehesa, “ Anisotropic mass density by two-dimensional acoustic metamaterials,” New J. Phys. 10, 023004 (2008).
J. B. Pendry and J. Li, “ An acoustic metafluid: Realizing a broadband acoustic cloak,” New J. Phys. 10, 115032 (2008).
B.-I. Popa and S. A. Cummer, “ Design and characterization of broadband acoustic composite metamaterials,” Phys. Rev. B 80, 174303 (2009).
J. Li, L. Fok, X. Yin, G. Bartal, and X. Zhang, “ Experimental demonstration of an acoustic magnifying hyperlens,” Nat. Mater. 8, 931934 (2009).
T. P. Martin, M. Nicholas, G. J. Orris, L.-W. Cai, D. Torrent, and J. Sanchez-Dehesa, “ Sonic gradient index lens for aqueous applications,” Appl. Phys. Lett. 97, 113503 (2010).
A. Climente, D. Torrent, and J. Sanchez-Dehesa, “ Sound focusing by gradient index sonic lenses,” Appl. Phys. Lett. 97, 104103 (2010).
S. H. Lee, C. M. Park, Y. M. Seo, Z. G. Wang, and C. K. Kim, “ Composite acoustic medium with simultaneously negative density and modulus,” Phys. Rev. Lett. 104, 054301 (2010).
B. Liang, X. S. Guo, J. Tu, D. Zhang, and J. C. Cheng, “ An acoustic rectifier,” Nat. Mater. 9, 989992 (2010).
S. Zhang, C. Xia, and N. Fang, “ Broadband acoustic cloak for ultrasound waves,” Phys. Rev. Lett. 106, 024301 (2011).
B.-I. Popa, L. Zigoneanu, and S. A. Cummer, “ Experimental acoustic ground cloak in air,” Phys. Rev. Lett. 106, 253901 (2011).
L. Fok and X. Zhang, “ Negative acoustic index metamaterial,” Phys. Rev. B 83, 214304 (2011).
L. Zigoneanu, B.-I. Popa, A. F. Starr, and S. A. Cummer, “ Design and measurements of a broadband two-dimensional acoustic metamaterial with anisotropic effective mass density,” J. Appl. Phys. 109, 054906 (2011).
N. Boechler, G. Theochari, and C. Daraio, “ Bifurcation-based acoustic switching and rectification,” Nat. Mater. 10, 665668 (2011).
L. Zigoneanu, B.-I. Popa, and S. A. Cummer, “ Design and measurements of a broadband two-dimensional acoustic lens,” Phys. Rev. B 84, 024305 (2011).
Z. Liang and J. Li, “ Extreme acoustic metamaterial by coiling up space,” Phys. Rev. Lett. 108, 114301 (2012).
W. Akl and A. Baz, “ Experimental characterization of active acoustic metamaterial cell with controllable dynamic density,” J. Appl. Phys. 112, 084912 (2012).
B.-I. Popa, L. Zigoneanu, and S. A. Cummer, “ Tunable active acoustic metamaterials,” Phys. Rev. B 88, 024303 (2013).
Y. Xie, B.-I. Popa, L. Zigoneanu, and S. A. Cummer, “ Measurement of a broadband negative index with space-coiling acoustic metamaterials,” Phys. Rev. Lett. 110, 175501 (2013).
W. Kan, B. Liang, X. Zhu, R. Li, X. Zou, H. Wu, J. Yang, and J. Cheng, “ Acoustic illusion near boundaries of arbitrary curved geometry,” Sci. Rep. 3, 1427 (2013).
V. M. Garcia-Chocano, J. Christensen, and J. Sanchez-Dehesa, “ Negative refraction and energy funneling by hyperbolic materials: An experimental demonstration in acoustics,” Phys. Rev. Lett. 112, 144301 (2014).
B.-I. Popa and S. A. Cummer, “ Non-reciprocal and highly nonlinear active acoustic metamaterials,” Nat. Commun. 5, 3398 (2014).
W. Kan, V. M. García-Chocano, F. Cervera, B. Liang, X.-y. Zou, L.-l. Yin, J. Cheng, and J. Sánchez-Dehesa, “ Broadband acoustic cloaking within an arbitrary hard cavity,” Phys. Rev. Appl. 3, 064019 (2015).
R. Fleury, D. R. Sounas, C. F. Sieck, M. R. Haberman, and A. Alu, “ Sound isolation and giant linear nonreciprocity in a compact acoustic circulator,” Science 343, 516519 (2014).
L. Zigoneanu, B.-I. Popa, and S. A. Cummer, “ Three-dimensional broadband omnidirectional acoustic ground cloak,” Nat. Mater. 13, 352355 (2014).
Y. Urzhumov, F. Ghezzo, J. Hunt, and D. R. Smith, “ Acoustic cloaking transformations from attainable material properties,” New J. Phys. 12, 073014 (2010).
B.-I. Popa and S. A. Cummer, “ Homogeneous and compact acoustic ground cloaks,” Phys. Rev. B 83, 224304 (2011).
G. W. Milton and A. V. Cherkaev, “ Which elasticity tensors are realizable?,” J. Eng. Mater. Technol. 117, 483493 (1995).
A. N. Norris, “ Acoustic metafluids,” J. Acoust. Soc. Am. 125, 839849 (2009).
C. L. Scandrett, J. E. Boisvert, and T. R. Howarth, “ Acoustic cloaking using layered pentamode materials,” J. Acoust. Soc. Am. 127, 28562864 (2010).
N. H. Gokhale, J. L. Cipolla, and A. N. Norris, “ Special transformations for pentamode acoustic cloaking,” J. Acoust. Soc. Am. 132, 29322941 (2012).
C. N. Layman, C. J. Naify, T. P. Martin, D. C. Calvo, and G. J. Orris, “ Highly anisotropic elements for acoustic pentamode applications,” Phys. Rev. Lett. 111, 024302 (2013).
T. Bruckmann, M. Thiel, M. Kadic, R. Schittny, and M. Wegener, “ An elasto-mechanical unfeelability cloak made of pentamode metamaterials,” Nat. Comm. 5, 4130 (2014).
T. Brunet, A. Merlin, M. Mascaro, K. Zimny, J. Leng, O. Poncelet, C. Aristegui, and O. Mondain-Monval, “ Soft 3d acoustic metamaterial with negative index,” Nat. Mater. 14, 384388 (2015).
P. S. Wilson, R. A. Roy, and W. M. Carey, “ An improved water-filled impedance tube,” J. Acoust. Soc. Am. 113, 32453252 (2003).
P. H. Mott, C. M. Roland, and R. D. Corsaro, “ Acoustic and dynamic mechanical properties of a polyurethane rubber,” J. Acoust. Soc. Am. 111, 17821790 (2002).
V. Fokin, M. Ambati, C. Sun, and X. Zhang, “ Method for retrieving effective properties of locally resonant acoustic metamaterials,” Phys. Rev. B 76, 144302 (2007).
M. D. Guild, V. M. Garcia-Chocano, W. Kan, and J. Sanchez-Dehesa, “ Acoustic metamaterial absorbers based on multilayered sonic crystals,” J. Appl. Phys. 117, 114902 (2015).

Data & Media loading...


Article metrics loading...



The paper presents a method to design and characterize mechanically robust solid acoustic metamaterials suitable for operation in dense fluids such as water. These structures, also called metafluids, behave acoustically as inertial fluids characterized by anisotropic mass densities and isotropic bulk modulus. The method is illustrated through the design and experimental characterization of a metafluid consisting of perforated steel plates held together by rubber coated magnetic spacers. The spacers are very effective at reducing the effective shear modulus of the structure, and therefore effective at minimizing the ensuing coupling between the shear and pressure waves inside the solid effective medium. Inertial anisotropy together with fluid-like acoustic behavior are key properties that bring transformation acoustics in dense fluids closer to reality.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd