Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/asa/journal/jasa/139/6/10.1121/1.4950754
1.
S. A. Cummer and D. Schurig, “ One path to acoustic cloaking,” New J. Phys. 9, 45 (2007).
http://dx.doi.org/10.1088/1367-2630/9/3/045
2.
H. Chen and C. T. Chan, “ Acoustic cloaking in three dimensions using acoustic metamaterials,” Appl. Phys. Lett. 91, 183518 (2007).
http://dx.doi.org/10.1063/1.2803315
3.
A. N. Norris, “ Acoustic cloaking theory,” Proc. R. Soc. A 464, 24112434 (2008).
http://dx.doi.org/10.1098/rspa.2008.0076
4.
Z. Liu, X. Zhang, Y. Mao, Y. Y. Zhu, Z. Yang, C. T. Chan, and P. Sheng, “ Locally resonant sonic materials,” Science 289, 17341736 (2000).
http://dx.doi.org/10.1126/science.289.5485.1734
5.
N. Fang, D. Xi, J. Xu, M. Ambati, W. Srituravanich, C. Sun, and X. Zhang, “ Ultrasonic materials with negative modulus,” Nat. Mater. 5, 452456 (2006).
http://dx.doi.org/10.1038/nmat1644
6.
D. Torrent and J. Sanchez-Dehesa, “ Anisotropic mass density by two-dimensional acoustic metamaterials,” New J. Phys. 10, 023004 (2008).
http://dx.doi.org/10.1088/1367-2630/10/2/023004
7.
J. B. Pendry and J. Li, “ An acoustic metafluid: Realizing a broadband acoustic cloak,” New J. Phys. 10, 115032 (2008).
http://dx.doi.org/10.1088/1367-2630/10/11/115032
8.
B.-I. Popa and S. A. Cummer, “ Design and characterization of broadband acoustic composite metamaterials,” Phys. Rev. B 80, 174303 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.174303
9.
J. Li, L. Fok, X. Yin, G. Bartal, and X. Zhang, “ Experimental demonstration of an acoustic magnifying hyperlens,” Nat. Mater. 8, 931934 (2009).
http://dx.doi.org/10.1038/nmat2561
10.
T. P. Martin, M. Nicholas, G. J. Orris, L.-W. Cai, D. Torrent, and J. Sanchez-Dehesa, “ Sonic gradient index lens for aqueous applications,” Appl. Phys. Lett. 97, 113503 (2010).
http://dx.doi.org/10.1063/1.3489373
11.
A. Climente, D. Torrent, and J. Sanchez-Dehesa, “ Sound focusing by gradient index sonic lenses,” Appl. Phys. Lett. 97, 104103 (2010).
http://dx.doi.org/10.1063/1.3488349
12.
S. H. Lee, C. M. Park, Y. M. Seo, Z. G. Wang, and C. K. Kim, “ Composite acoustic medium with simultaneously negative density and modulus,” Phys. Rev. Lett. 104, 054301 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.054301
13.
B. Liang, X. S. Guo, J. Tu, D. Zhang, and J. C. Cheng, “ An acoustic rectifier,” Nat. Mater. 9, 989992 (2010).
http://dx.doi.org/10.1038/nmat2881
14.
S. Zhang, C. Xia, and N. Fang, “ Broadband acoustic cloak for ultrasound waves,” Phys. Rev. Lett. 106, 024301 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.024301
15.
B.-I. Popa, L. Zigoneanu, and S. A. Cummer, “ Experimental acoustic ground cloak in air,” Phys. Rev. Lett. 106, 253901 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.253901
16.
L. Fok and X. Zhang, “ Negative acoustic index metamaterial,” Phys. Rev. B 83, 214304 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.214304
17.
L. Zigoneanu, B.-I. Popa, A. F. Starr, and S. A. Cummer, “ Design and measurements of a broadband two-dimensional acoustic metamaterial with anisotropic effective mass density,” J. Appl. Phys. 109, 054906 (2011).
http://dx.doi.org/10.1063/1.3552990
18.
N. Boechler, G. Theochari, and C. Daraio, “ Bifurcation-based acoustic switching and rectification,” Nat. Mater. 10, 665668 (2011).
http://dx.doi.org/10.1038/nmat3072
19.
L. Zigoneanu, B.-I. Popa, and S. A. Cummer, “ Design and measurements of a broadband two-dimensional acoustic lens,” Phys. Rev. B 84, 024305 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.024305
20.
Z. Liang and J. Li, “ Extreme acoustic metamaterial by coiling up space,” Phys. Rev. Lett. 108, 114301 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.114301
21.
W. Akl and A. Baz, “ Experimental characterization of active acoustic metamaterial cell with controllable dynamic density,” J. Appl. Phys. 112, 084912 (2012).
http://dx.doi.org/10.1063/1.4759327
22.
B.-I. Popa, L. Zigoneanu, and S. A. Cummer, “ Tunable active acoustic metamaterials,” Phys. Rev. B 88, 024303 (2013).
http://dx.doi.org/10.1103/PhysRevB.88.024303
23.
Y. Xie, B.-I. Popa, L. Zigoneanu, and S. A. Cummer, “ Measurement of a broadband negative index with space-coiling acoustic metamaterials,” Phys. Rev. Lett. 110, 175501 (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.175501
24.
W. Kan, B. Liang, X. Zhu, R. Li, X. Zou, H. Wu, J. Yang, and J. Cheng, “ Acoustic illusion near boundaries of arbitrary curved geometry,” Sci. Rep. 3, 1427 (2013).
http://dx.doi.org/10.1038/srep01427
25.
V. M. Garcia-Chocano, J. Christensen, and J. Sanchez-Dehesa, “ Negative refraction and energy funneling by hyperbolic materials: An experimental demonstration in acoustics,” Phys. Rev. Lett. 112, 144301 (2014).
http://dx.doi.org/10.1103/PhysRevLett.112.144301
26.
B.-I. Popa and S. A. Cummer, “ Non-reciprocal and highly nonlinear active acoustic metamaterials,” Nat. Commun. 5, 3398 (2014).
http://dx.doi.org/10.1038/ncomms4398
27.
W. Kan, V. M. García-Chocano, F. Cervera, B. Liang, X.-y. Zou, L.-l. Yin, J. Cheng, and J. Sánchez-Dehesa, “ Broadband acoustic cloaking within an arbitrary hard cavity,” Phys. Rev. Appl. 3, 064019 (2015).
http://dx.doi.org/10.1103/PhysRevApplied.3.064019
28.
R. Fleury, D. R. Sounas, C. F. Sieck, M. R. Haberman, and A. Alu, “ Sound isolation and giant linear nonreciprocity in a compact acoustic circulator,” Science 343, 516519 (2014).
http://dx.doi.org/10.1126/science.1246957
29.
L. Zigoneanu, B.-I. Popa, and S. A. Cummer, “ Three-dimensional broadband omnidirectional acoustic ground cloak,” Nat. Mater. 13, 352355 (2014).
http://dx.doi.org/10.1038/nmat3901
30.
Y. Urzhumov, F. Ghezzo, J. Hunt, and D. R. Smith, “ Acoustic cloaking transformations from attainable material properties,” New J. Phys. 12, 073014 (2010).
http://dx.doi.org/10.1088/1367-2630/12/7/073014
31.
B.-I. Popa and S. A. Cummer, “ Homogeneous and compact acoustic ground cloaks,” Phys. Rev. B 83, 224304 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.224304
32.
G. W. Milton and A. V. Cherkaev, “ Which elasticity tensors are realizable?,” J. Eng. Mater. Technol. 117, 483493 (1995).
http://dx.doi.org/10.1115/1.2804743
33.
A. N. Norris, “ Acoustic metafluids,” J. Acoust. Soc. Am. 125, 839849 (2009).
http://dx.doi.org/10.1121/1.3050288
34.
C. L. Scandrett, J. E. Boisvert, and T. R. Howarth, “ Acoustic cloaking using layered pentamode materials,” J. Acoust. Soc. Am. 127, 28562864 (2010).
http://dx.doi.org/10.1121/1.3365248
35.
N. H. Gokhale, J. L. Cipolla, and A. N. Norris, “ Special transformations for pentamode acoustic cloaking,” J. Acoust. Soc. Am. 132, 29322941 (2012).
http://dx.doi.org/10.1121/1.4744938
36.
C. N. Layman, C. J. Naify, T. P. Martin, D. C. Calvo, and G. J. Orris, “ Highly anisotropic elements for acoustic pentamode applications,” Phys. Rev. Lett. 111, 024302 (2013).
http://dx.doi.org/10.1103/PhysRevLett.111.024302
37.
T. Bruckmann, M. Thiel, M. Kadic, R. Schittny, and M. Wegener, “ An elasto-mechanical unfeelability cloak made of pentamode metamaterials,” Nat. Comm. 5, 4130 (2014).
http://dx.doi.org/10.1038/ncomms5130
38.
T. Brunet, A. Merlin, M. Mascaro, K. Zimny, J. Leng, O. Poncelet, C. Aristegui, and O. Mondain-Monval, “ Soft 3d acoustic metamaterial with negative index,” Nat. Mater. 14, 384388 (2015).
http://dx.doi.org/10.1038/nmat4164
39.
P. S. Wilson, R. A. Roy, and W. M. Carey, “ An improved water-filled impedance tube,” J. Acoust. Soc. Am. 113, 32453252 (2003).
http://dx.doi.org/10.1121/1.1572140
40.
P. H. Mott, C. M. Roland, and R. D. Corsaro, “ Acoustic and dynamic mechanical properties of a polyurethane rubber,” J. Acoust. Soc. Am. 111, 17821790 (2002).
http://dx.doi.org/10.1121/1.1459465
41.
V. Fokin, M. Ambati, C. Sun, and X. Zhang, “ Method for retrieving effective properties of locally resonant acoustic metamaterials,” Phys. Rev. B 76, 144302 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.144302
42.
M. D. Guild, V. M. Garcia-Chocano, W. Kan, and J. Sanchez-Dehesa, “ Acoustic metamaterial absorbers based on multilayered sonic crystals,” J. Appl. Phys. 117, 114902 (2015).
http://dx.doi.org/10.1063/1.4915346
http://aip.metastore.ingenta.com/content/asa/journal/jasa/139/6/10.1121/1.4950754
Loading
/content/asa/journal/jasa/139/6/10.1121/1.4950754
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/asa/journal/jasa/139/6/10.1121/1.4950754
2016-06-30
2016-12-07

Abstract

The paper presents a method to design and characterize mechanically robust solid acoustic metamaterials suitable for operation in dense fluids such as water. These structures, also called metafluids, behave acoustically as inertial fluids characterized by anisotropic mass densities and isotropic bulk modulus. The method is illustrated through the design and experimental characterization of a metafluid consisting of perforated steel plates held together by rubber coated magnetic spacers. The spacers are very effective at reducing the effective shear modulus of the structure, and therefore effective at minimizing the ensuing coupling between the shear and pressure waves inside the solid effective medium. Inertial anisotropy together with fluid-like acoustic behavior are key properties that bring transformation acoustics in dense fluids closer to reality.

Loading

Full text loading...

/deliver/fulltext/asa/journal/jasa/139/6/1.4950754.html;jsessionid=d3TxmB1ysa-A3kG8djOmxeyb.x-aip-live-03?itemId=/content/asa/journal/jasa/139/6/10.1121/1.4950754&mimeType=html&fmt=ahah&containerItemId=content/asa/journal/jasa
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=asadl.org/jasa/139/6/10.1121/1.4950754&pageURL=http://scitation.aip.org/content/asa/journal/jasa/139/6/10.1121/1.4950754'
Right1,Right2,Right3,