Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
R. Gramiak and P. Shah, “ Echocardiography of the aortic root,” Invest. Radiol. 3, 356366 (1968).
S. Sirsi and M. Borden, “ Microbubble compositions, properties, and biomedical applications,” Bubble Sci. Eng. Technol. 1, 317 (2009).
B. P. Davidson and J. R. Lindner, “ Future applications of contrast echocardiography,” Heart 98, 246253 (2012).
S. R. Wilson and P. N. Burns, “ Microbubble-enhanced US in body imaging: What role?” Radiology 257, 2439 (2010).
A. Novell, J. M. Escoffre, and A. Bouakaz, “ Ultrasound contrast imaging in cancer—Technical aspects and prospects,” Curr. Mol. Imag. 2, 7788 (2013).
R. X. Xu, S. P. Povoski, and E. W. Martin, Jr., “ Targeted delivery of microbubbles and nanobubbles for image-guided thermal ablation therapy of tumors,” Expert Rev. Med. Dev. 7, 303306 (2010).
M. de Saint Victor, C. Crake, C. C. Coussios, and E. Stride, “ Properties, characteristics and applications of microbubbles for sonothrombolysis,” Exp. Opin. Drug Deliv. 11, 187209 (2014).
J. M. Escoffre, A. Zeghimi, A. Novell, and A. Bouakaz, “ In-vivo gene delivery by sonoporation: Recent progress and prospects,” Curr. Gene Theory 13, 214 (2012).
J. E. Chomas, P. Dayton, J. Allen, K. Morgan, and K. W. Ferrara, “ Mechanisms of contrast agent destruction,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 48, 232248 (2001).
O. Couture, P. D. Bevan, E. Cherin, K. Cheung, P. N. Burns, and F. S. Foster, “ Investigating perfluorohexane particles with high-frequency ultrasound,” Ultrasound Med. Biol. 32, 7382 (2006).
A. H. Lo, O. D. Kripfgans, P. L. Carson, E. D. Rothman, and J. B. Fowlkes, “ Acoustic droplet vaporization threshold: Effects of pulse duration and contrast agent,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54, 933946 (2007).
P. S. Sheeran, V. P. Wong, S. Luois, R. J. McFarland, W. D. Ross, S. Feingold, T. O. Matsunaga, and P. A. Dayton, “ Decafluorobutane as a phase-change contrast agent for low-energy extravascular ultrasonic imaging,” Ultrasound Med. Biol. 37, 15181530 (2011).
N. Reznik, R. Williams, and P. N. Burns, “ Investigation of vaporized submicron perfluorocarbon droplets as an ultrasound contrast agent,” Ultrasound Med. Biol. 37, 12711279 (2011).
D. Thakkar, R. Gupta, K. Monson, and N. Rapoport, “ Effect of ultrasound on the permeability of vascular wall to nano-emulsion droplets,” Ultrasound Med. Biol. 39, 18041811 (2013).
O. Shpak, M. Verweij, H. J. Vos, N. de Jong, D. Lohse, and M. Versluis, “ Acoustic droplet vaporization is initiated by superharmonic focusing,” Proc. Natl. Acad. Sci. U.S.A. 111, 16971702 (2014).
O. D. Kripfgans, J. B. Fowlkes, D. L. Miller, O. P. Eldevik, and P. L. Carson, “ Acoustic droplet vaporization for therapeutic and diagnostic applications,” Ultrasound Med. Biol. 26, 11771189 (2000).
N. Reznik, G. Lajoinie, O. Shpak, E. C. Gelderblom, R. Williams, N. de Jong, M. Versluis, and P. N. Burns, “ On the acoustic properties of vaporized submicron perfluorocarbon droplets,” Ultrasound Med. Biol. 40, 13791384 (2014).
P. S. Sheeran, J. D. Rojas, C. Puett, J. Hjelmquist, C. B. Arena, and P. A. Dayton, “ Contrast-enhanced ultrasound imaging and in vivo circulatory kinetics with low-boiling-point nanoscale phase-change perfluorocarbon agents,” Ultrasound Med. Biol. 41, 814831 (2015).
M. L. Fabiilli, K. J. Haworth, N. H. Fakhri, O. D. Kripfgans, P. L. Carson, and J. B. Fowlkes, “ The role of inertial cavitation in acoustic droplet vaporization,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56, 10061017 (2009).
C. C. Chen, P. S. Sheeran, S. Y. Wu, O. O. Olumolade, P. A. Dayton, and E. E. Konofagou, “ Targeted drug delivery with focused ultrasound-induced blood-brain barrier opening using acoustically-activated nanodroplets,” J. Control Release 172, 795804 (2013).
S. T. Kang, Y. C. Lin, and C. K. Yeh, “ Mechanical bioeffects of acoustic droplet vaporization in vessel-mimicking phantoms,” Ultrason. Sonochem. 21, 18661874 (2014).
P. S. Sheeran, T. O. Matsunaga, and P. A. Dayton, “ Phase change events of volatile liquid perfluorocarbon contrast agents produce unique acoustic signatures,” Phys. Med. Biol. 59, 379401 (2014).
L. C. Phillips, P. S. Sheeran, C. Puett, K. F. Timbie, R. J. Price, G. Wilson Miller, and P. A. Dayton, “ Dual perfluorocarbon nanodroplets enhance high intensity focused ultrasound heating and extend therapeutic window in vivo,” J. Acoust. Soc. Am. 134, 4049 (2013).
C. B. Arena, A. Novell, P. S. Sheeran, C. Puett, L. C. Moyer, and P. A. Dayton, “ Dual-frequency acoustic droplet vaporization detection for medical imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 62, 16231633 (2015).
G. Caliano, R. Carotenuto, E. Cianci, V. Foglietti, A. Caronti, A. Iula, and M. Pappalardo, “ Design, fabrication and characterization of a capacitive micromachined ultrasonic probe for medical imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52, 22592269 (2005).
Y. Huang, E. Haeggstrom, B. Bayram, X. Zhuang, A. S. Ergun, C. H. Cheng, and B. T. Khuri-Yakub, “ Comparison of conventional and collapsed region operation of capacitive micromachined ultrasonic transducers,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53, 19181933 (2006).
S. Vaithilingam, T. J. Ma, Y. Furukawa, I. O. Wygant, X. Zhuang, A. De La Zerda, O. Oralkan, A. Kamaya, S. S. Gambhir, R. B. Jeffrey, Jr., and B. T. Khuri-Yakub, “ Three-dimensional photoacoustic imaging using a two-dimensional CMUT array,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56, 24112419 (2009).
A. Novell, J. M. Escoffre, and A. Bouakaz, “ Second harmonic and subharmonic for non-linear wideband contrast imaging using a capacitive micromachined ultrasonic transducer array,” Ultrasound Med. Biol. 39, 15001512 (2013).
P. Cristman, O. Oralkan, X. Zhuang, T. J. Ma, S. Vaithilingam, T. Carver, I. O. Wygant, and B. T. Khuri-Yakub, “ A 2D CMUT hydrophone array: Characterization results,” in Proceedings of the IEEE Ultrasonics Symposium, Rome (2009), p. 992995.
X. Jin, O. Oralkan, F. L. Degertekin, and B. T. Khuri-Yakub, “ Characterization of one-dimensional capacitive micromachined ultrasonic immersion transducer arrays,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 48, 750760 (2001).
K. R. Nightingale, C. C. Church, G. Harris, K. A. Wear, M. R. Bailey, P. L. Carson, H. Jiang, K. L. Sandstrom, T. L. Szabo, and M. C. Ziskin, “ Conditionally increased acoustic pressures in nonfetal diagnostic ultrasound examinations without contrast agents: A preliminary assessment,” J. Ultrasound Med. 34, 141 (2015).
P. S. Sheeran, S. H. Luois, L. B. Mullin, T. O. Matsunaga, and P. A. Dayton, “ Design of ultrasonically-activatable nanoparticles using low boiling point perfluorocarbons,” Biomaterials 33, 32623269 (2012).
M. A. Borden, D. E. Kruse, C. F. Caskey, S. Zhao, P. A. Dayton, and K. W. Ferrara, “ Influence of lipid shell physicochemical properties on ultrasound-induced microbubble destruction,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52, 19922002 (2005).
A. Novell, M. Legros, N. Felix, and A. Bouakaz, “ Exploitation of capacitive micromachined transducers for nonlinear ultrasound imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56, 27332743 (2009).
A. Novell, M. Legros, J. M. Gregoire, P. A. Dayton, and A. Bouakaz, “ Evaluation of bias voltage modulation sequence for nonlinear contrast agent imaging using a capacitive micromachined ultrasonic transducer array,” Phys. Med. Biol. 59, 48794896 (2014).
S. Zhou, P. Reynolds, and J. Hossack, “ Precompensated excitation waveforms to suppress harmonic generation in MEMS electrostatic transducers,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 51, 15641574 (2004).
S. Satir and F. L. Degertekin, “ Harmonic reduction in capacitive micromachined ultrasonic transducers by gap feedback linearization,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59, 5059 (2012).
O. M. Viessmann, R. J. Eckersley, K. Christensen-Jeffries, M. X. Tang, and C. Dunsby, “ Acoustic super-resolution with ultrasound and microbubbles,” Phys. Med. Biol. 58, 64476458 (2013).
Y. Desailly, O. Couture, M. Fink, and M. Tanter, “ Sono-activated ultrasound localization microscopy,” Appl. Phys. Lett. 103, 174107 (2013).
K. H. Martin, B. D. Lindsey, J. Ma, M. Lee, S. Li, F. S. Foster, X. Jiang, and P. A. Dayton, “ Dual-frequency piezoelectric transducers for contrast enhanced ultrasound imaging,” Sensors (Basel) 14, 2082520842 (2014).

Data & Media loading...


Article metrics loading...



An ongoing challenge exists in understanding and optimizing the acoustic droplet vaporization (ADV) process to enhance contrast agent effectiveness for biomedical applications. Acoustic signatures from vaporization events can be identified and differentiated from microbubble or tissue signals based on their frequency content. The present study exploited the wide bandwidth of a 128-element capacitive micromachined ultrasonic transducer (CMUT) array for activation (8 MHz) and real-time imaging (1 MHz) of ADV events from droplets circulating in a tube. Compared to a commercial piezoelectric probe, the CMUT array provides a substantial increase of the contrast-to-noise ratio.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd