Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
E. E. Beuling, D. van Dusschoten, P. Lens, J. C. van den Heuvel, H. Van As, and S. P. P. Ottengraf, “ Characterization of the diffusive properties of biofilms using pulsed field gradient-nuclear magnetic resonance,” Biotechnol. Bioeng. 60(3), 283291 (1998).;2-D
P. S. Steward, “ Diffusion in biofilms,” J. Bacteriol. 185(5), 14851491 (2003).
Z. Zhang, E. Nadezhina, and K. J. Wilkinson, “ Quantifying diffusion in a biofilm of Streptococcus mutans,” Antimicrob. Agents Chemother. 55(3), 10751081 (2011).
K. Forier, K. Raemdonck, S. C. De Smedt, J. Demeester, T. Coenye, and K. Braeckmans, “ Lipid and polymer nanoparticles for drug delivery to bacterial biofilms,” J. Controlled Release 190, 607623 (2014).
K. Forier, A. S. Messiaen, K. Raemdonck, H. Nelis, S. C. De Smedt, J. Demeester, T. Coenye, and K. Braeckmans, “ Probing the size limit for nanomedicine penetration into Burkholderia multivorans and Pseudomonas aeruginosa biofilms,” J. Controlled Release 195, 2128 (2014).
X. Li, Y. C. Yeh, K. Giri, R. Mout, R. F. Loandis, Y. S. Prakash, and V. M. Rotello, “ Control of nanoparticle penetration into biofilms through surface design,” Chem. Commun. 51, 282285 (2015).
J. K. Miller, R. Neubig, C. B. Clemons, K. L. Kreider, J. P. Wilber, G. W. Young, A. J. Ditto, Y. H. Yun, A. Milsted, H. T. Badawy, M. J. Panzner, W. J. Youngs, and C. L. Cannon, “ Nanoparticle deposition onto biofilms,” Ann. Biomed. Eng. 41(1), 5367 (2013).
T. A. Bigelow, T. Northagen, T. M. Hill, and F. C. Sailer, “ The destruction of escherichia coli biofilms using high-intensity focused ultrasound,” Ultrasound Med. Biol. 35(6), 10261031 (2009).
J. Xu, T. A. Bigelow, L. J. Halverson, J. M. Middendorf, and B. Rusk, “ Minimization of treatment time for in vitro 1.1 MHz destruction of Pseudomonas aeruginosa biofilms by high-intensity focused ultrasound,” Ultrasonics 52, 668675 (2012).
A. A. Bsoul, J. P. Magnin, N. Commenges-Bernole, N. Gondrexon, J. Willison, and C. Petrier, “ Effectiveness of ultrasound for the destruction of Mycobacterium sp. strain (6PY1),” Ultrason. Sonochem. 17, 106110 (2010).
Z. Qian, P. Stoodley, and W. G. Pitt, “ Effect of low-intensity ultrasound upon biofilm structure from confocal scanning laser microscopy observation,” Biomaterials 17, 19751990 (1996).
Z. Qian, R. D. Sagers, and W. G. Pitt, “ The effect of ultrasonic frequency upon enhanced killing of p. aeruginosa biofilms,” Ann. Biomed. Eng. 25, 6976 (1997).
A. M. Rediske, B. L. Roeder, M. K. Brown, J. L. Nelson, R. L. Robinson, D. O. Draper, G. B. Schaalje, R. A. Robinson, and W. G. Pitt, “ Ultrasonic enhancement of antibiotic action on Escherichia coli Biofilms: An in vivo model,” Antimicrob. Agents Chemother. 43(5), 12111214 (1999).
A. R. Baumann, S. E. Martin, and H. Feng, “ Removal of Listeria monocytogenes biofilms from stainless steel by use of ultrasound and ozone,” J. Food Prot. 72(6), 13061309 (2009).
A. Schroeder, J. Kost, and Y. Barenholz, “ Ultrasound, liposomes, and drug delivery: Principles for using ultrasound to control the release of drugs from liposomes,” Chem. Phys. Lipids 162, 116 (2009).
J. Sundaram, B. R. Mellein, and S. Mitragotri, “ An experimental and theoretical analysis of ultrasound-induced permeabilization of cell membranes,” Biophys. J. 84, 30873101 (2003).
D. Ma, A. M. Green, G. G. Willsey, J. S. Marshall, M. L. Wargo, and J. R. Wu, “ Effects of acoustic streaming from moderate-intensity pulsed ultrasound for enhancing biofilm mitigation effectiveness of drug-loaded liposomes,” J. Acoust. Soc. Am. 138(2), 10431051 (2015).
E. T. Vogler and C. V. Chrysikopoulos, “ Experimental investigation of acoustically enhanced solute transport in porous media,” Geophys. Res. Lett. 29(15), 5-15-4 (2002).
L. Bevilacqua, A. C. N. R. Galeão, and F. P. Costa, “ A new analytical formulation of retention effects on particle diffusion processes,” An. Bras. Cienc. 83(4), 14431464 (2011).
K. K. S. Buck, S. R. Dungan, and R. J. Phillips, “ The effect of solute concentration on hindered gradient diffusion in polymeric gels,” J. Fluid Mech. 396, 287317 (1999).
E. Kätelhön and R. G. Compton, “ Understanding nano-impacts: Impact times and near-wall hindered diffusion,” Chem. Sci. 5, 45924598 (2014).
J. R. Lawrence, G. M. Wolfaardt, and D. R. Korber, “ Determination of diffusion coefficients in biofilms by confocal laser microscopy,” Appl. Environ. Microbiol. 60(4), 11661173 (1994).
J. A. Rowley, G. Madlambayan, and D. J. Mooney, “ Alginate hydrogels as synthetic extracellular matrix materials,” Biomaterials 20(1), 4553 (1999).
O. Smidsrød and G. Skjåk-Brik, “ Alginate as immobilization matrix for cells,” Trends Biotechnol. 8, 7178 (1990).

Data & Media loading...


Article metrics loading...



A stochastic model is presented for nanoparticle transport in a biofilm to explain how the combination of acoustic oscillations and intermittent retention due to interaction with the pore walls of the biofilm leads to diffusion enhancement. An expression for the effective diffusion coefficient was derived that varies with the square of the oscillation velocity amplitude. This expression was validated by comparison of an analytical diffusion solution to the stochastic model prediction. The stochastic model was applied to an example problem associated with liposome penetration into a hydrogel, and it was found to yield solutions in which liposome concentration varied exponentially with distance into the biofilm.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd