Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/asa/journal/jasa/140/1/10.1121/1.4954869
1.
H. Kuttruff, Room Acoustics, 5th ed. ( Elsevier, London, UK, 2009), pp. 1349.
2.
T. J. Cox and P. D'Antonio, Acoustic Absorbers and Diffusers: Theory, Design and Application, 2nd ed. ( Taylor and Francis, London, UK, 2004), pp. 1476.
3.
M. L. Munjal, Acoustics of Ducts and Mufflers, 2nd ed. ( John Wiley and Sons, New York, 2014), pp. 1416.
4.
B. Kotzen and C. English, Environmental Noise Barriers, 2nd ed. ( Taylor and Francis, London, UK, 2009), pp. 1258.
5.
H. A. Haus, Waves and Fields in Optoelectronics ( Prentice Hall, Englewood Cliffs, NJ, 1984), pp. 197216.
6.
Y. Xu, Y. Li, R. K. Lee, and A. Yariv, “ Scattering-theory analysis of waveguide-resonator coupling,” Phys. Rev. E 62, 7389 (2000).
http://dx.doi.org/10.1103/PhysRevE.62.7389
7.
M. Cai, O. Painter, and K. J. Vahala, “ Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system,” Phys. Rev. Lett. 85, 7477 (2000).
http://dx.doi.org/10.1103/PhysRevLett.85.74
8.
V. Romero-Garcia, G. Theocharis, O. Richoux, A. Merkel, V. Tournat, and V. Pagneux, “ Perfect and broadband acoustic absorption by critically coupled sub-wavelength resonators,” Sci. Rep. 5, 19519 (2015).
http://dx.doi.org/10.1038/srep19519
9.
V. Leroy, A. Strybulevych, M. Lanoy, F. Lemoult, A. Tourin, and J. H. Page, “ Superabsorption of acoustic waves with bubble metascreens,” Phys. Rev. B 91, 020301 (2015).
http://dx.doi.org/10.1103/PhysRevB.91.020301
10.
V. Romero-García, G. Theocharis, O. Richoux, and V. Pagneux, “ Use of complex frequency plane to design broad and subwavelength absorbers,” J. Acoust. Soc. Am. 139, 33953403 (2016).
http://dx.doi.org/10.1121/1.4950708
11.
A. Merkel, G. Theocharis, O. Richoux, V. Romero-Garcia, and V. Pagneux, “ Control of acoustic absorption in one-dimensional scattering by resonant scatterers,” Appl. Phys. Lett. 107, 244102 (2015).
http://dx.doi.org/10.1063/1.4938121
12.
G. Ma, M. Yang, S. Xiao, Z. Yang, and P. Sheng, “ Acoustic metasurface with hybrid resonances,” Nature Mater. 13, 873878 (2014).
http://dx.doi.org/10.1038/nmat3994
13.
N. Sugimoto, M. Masuda, and T. Hashiguchi, “ Frequency response of nonlinear oscillations of air column in a tube with an array of Helmholtz resonators,” J. Acoust. Soc. Am. 114(4), 17721784 (2003).
http://dx.doi.org/10.1121/1.1600719
14.
G. K. , Yu, Y. D. Zhang, and Y. Shen, “ Nonlinear amplitude-frequency response of a Helmholtz resonator,” J. Sound Vib. 133(2), 024502 (2011).
http://dx.doi.org/10.1115/1.4002958
15.
D. K. Singh and S. W. Rienstra, “ Nonlinear asymptotic impedance model for a Helmholtz resonator liner,” J. Sound Vib. 333(15), 35363549 (2014).
http://dx.doi.org/10.1016/j.jsv.2014.03.013
16.
S. W. Rienstra and A. Hirschberg, “ An introduction to acoustics,” technical report IWDE 92-06, revised, Technische Universiteit Eindhoven, Eindhoven, the Netherlands (2012).
17.
K. N. Reddy, A. V. Gopal, and S. D. Gupta, “ Nonlinearity induced critical coupling,” Opt. Lett. 38(14), 25172520 (2013).
http://dx.doi.org/10.1364/OL.38.002517
18.
T. H. Melling, “ The acoustic impedance of perforates at medium and high sound pressure levels,” J. Sound Vib. 29(1), 165 (1973).
http://dx.doi.org/10.1016/S0022-460X(73)80125-7
19.
J. Kergomard and A. Garcia, “ Simple discontinuities in acoustic waveguides at low frequencies: Critical analysis and formulae,” J. Sound Vib. 114(3), 465479 (1987).
http://dx.doi.org/10.1016/S0022-460X(87)80017-2
20.
V. Dubos, J. Kergomard, D. Keefe, J.-P. Dalmont, A. Khettabi, and K. Nederveen, “ Theory of sound propagation in a duct with a branched tube using modal decomposition,” Acta Acust. Acust. 85(2), 153169 (1999).
21.
U. Ingard and H. Ising, “ Acoustic nonlinearity of an orifice,” J. Acoust. Soc. Am. 42, 617 (1967).
http://dx.doi.org/10.1121/1.1910576
22.
J. H. M. Disselhorst and L. van Wijngaarden, “ Flow in the exit of open pipes during acoustic resonance,” J. Fluids Struct. 90, 293319 (1980).
http://dx.doi.org/10.1017/S0022112080000626
23.
Y. Auregan and M. Pachebat, “ Measurement of the non-linear behavior of acoustical rigid porous materials,” Phys. Fluids 11, 13421345 (1999).
http://dx.doi.org/10.1063/1.869999
24.
M. A. Temiz, J. Tournadre, I. L. Arteaga, and A. Hirschberg, “ Non-linear acoustic transfer impedance of micro-perforated plates with circular orifices,” J. Sound Vib. 366, 418428 (2015).
http://dx.doi.org/10.1016/j.jsv.2015.12.022
25.
P. Wei, C. Croenne, S. T. Chu, and J. Li, “ Symmetrical and anti-symmetrical coherent perfect absorption for acoustic waves,” Appl. Phys. Lett. 104, 121902 (2014).
http://dx.doi.org/10.1063/1.4869462
26.
A. H. Nayfeh, Introduction to Perturbation Techniques ( Wiley, New York, 1981), pp. 118121.
27.
B. H. Song and J. S. Bolton, “ A transfer-matrix approach for estimating the characteristic impedance and wave numbers of limp and rigid porous materials,” J. Acoust. Soc. Am. 107, 11311152 (2000).
http://dx.doi.org/10.1121/1.428404
28.
R. T. Muehleisen and C. W. Beamer IV, “ Comparison of errors in the three- and four-microphone methods used in the measurement of the acoustic properties of porous materials,” ARLO 3(4), 112117 (2002).
http://dx.doi.org/10.1121/1.1498175
http://aip.metastore.ingenta.com/content/asa/journal/jasa/140/1/10.1121/1.4954869
Loading
/content/asa/journal/jasa/140/1/10.1121/1.4954869
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/asa/journal/jasa/140/1/10.1121/1.4954869
2016-07-21
2016-12-05

Abstract

In this work, coherent perfect absorption of sound waves induced by the nonlinear response of a Helmholtz Resonator side loaded to a waveguide, is reported. It is shown that this two-port system can perfectly absorb two high amplitude symmetric incident waves under a certain condition. For the one-sided incidence configuration, this condition leads to an absorption equal to 0.5. Experiments verify these results and are in agreement with an analytical nonlinear impedance model for the resonator. The nonlinear control of perfect absorption opens new possibilities in the design of high amplitude sound attenuators for aero-engine applications.

Loading

Full text loading...

/deliver/fulltext/asa/journal/jasa/140/1/1.4954869.html;jsessionid=S6hVn6TffPIS-2IaG5SdyC30.x-aip-live-06?itemId=/content/asa/journal/jasa/140/1/10.1121/1.4954869&mimeType=html&fmt=ahah&containerItemId=content/asa/journal/jasa
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=asadl.org/jasa/140/1/10.1121/1.4954869&pageURL=http://scitation.aip.org/content/asa/journal/jasa/140/1/10.1121/1.4954869'
Right1,Right2,Right3,