Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/asa/journal/jasa/140/1/10.1121/1.4955005
1.
ANSI (1997). ANSI S3.5-1997, Methods for the Calculation of the Speech Intelligibility Index ( American National Standards Institute, New York).
2.
Chalupper, J. , and Fastl, H. (2002). “ Dynamic loudness model (DLM) for normal and hearing impaired listeners,” Acta Acust. Acust. 88, 378386.
3.
Cooke, M. , Mayo, C. , and Valentini-Botinhao, C. (2013). “ Intelligibility-enhancing speech modifications: The Hurricane Challenge,” in Proceedings of Interspeech, Lyon, France, pp. 35523556.
4.
Glasberg, B. R. , and Moore, B. C. J. (2002). “ A model of loudness applicable to time-varying sounds,” J. Audio Eng. Soc. 50, 331342.
5.
Glasberg, B. R. , and Moore, B. C. J. (2006). “ Prediction of absolute thresholds and equal-loudness contours using a modified loudness model,” J. Acoust. Soc. Am. 120, 585588.
http://dx.doi.org/10.1121/1.2214151
6.
Moore, B. C. J. (2014). “ Development and current status of the ‘Cambridge’ loudness models,” Trends Hear. 18, 129.
7.
Moore, B. C. J. , Glasberg, B. R. , and Baer, T. (1997). “ A model for the prediction of thresholds, loudness and partial loudness,” J. Audio Eng. Soc. 45, 224240.
8.
Moore, B. C. J. , Glasberg, B. R. , and Stone, M. A. (2003). “ Why are commercials so loud?—Perception and modeling of the loudness of amplitude-compressed speech,” J. Audio Eng. Soc. 51, 11231132.
9.
Moore, D. R. , Rosen, S. , Bamiou, D. E. , Campbell, N. G. , and Sirimanna, T. (2013). “Evolving concepts of developmental auditory processing disorder (APD): A British Society of Audiology APD special interest group ‘white paper,’ ” Int. J. Audiol. 52, 313.
http://dx.doi.org/10.3109/14992027.2012.723143
10.
Rennies, J. , Holube, I. , and Verhey, J. L. (2013). “ Loudness of speech and speech-like signals,” Acta Acust. Acust. 99, 268282.
http://dx.doi.org/10.3813/AAA.918609
11.
Rennies, J. , Verhey, J. L. , Chalupper, J. , and Fastl, H. (2009). “ Modeling temporal effects of spectral loudness summation,” Acta Acust. Acust. 95, 11121122.
http://dx.doi.org/10.3813/AAA.918243
12.
Rothauser, E. H. , Chapman, W. D. , Guttman, N. , Nordby, K. S. , Silbiger, H. R. , Urbanek, G. E. , and Weinstock, M. (1969). “ IEEE recommended practice for speech quality measurements,” IEEE Trans. Audio Electroacoust. 17, 225246.
13.
Takou, R. , Seiyama, N. , and Imai, A. (2013). “ Improvement of speech intelligibility by reallocation of spectral energy,” in Proceedings of Interspeech, Lyon, France, pp. 36053607.
14.
Turicchia, L. , and Sarpeshkar, R. (2005). “ A bio-inspired companding strategy for spectral enhancement,” IEEE Trans. Speech. Audio Proc. 13, 243253.
http://dx.doi.org/10.1109/TSA.2004.841044
15.
Yoo, S. D. , Boston, J. R. , El-Jaroudi, A. , Li, C. C. , Durrant, J. D. , Kovacyk, K. , and Shaiman, S. (2007). “ Speech signal modification to increase intelligibility in noisy environments,” J. Acoust. Soc. Am. 122, 11381149.
http://dx.doi.org/10.1121/1.2751257
16.
Zorila, C. , Kandia, V. , and Stylianou, Y. (2012). “ Speech-in-noise intelligibility improvement based on spectral shaping and dynamic range compression,” in Proceedings of Interspeech, Portland, OR, pp. 635638.
17.
Zorila, C. , and Stylianou, Y. (2014). “ On spectral and time domain energy reallocation for speech-in-noise intelligibility enhancement,” in Proceedings of Interspeech, Singapore, pp. 20502054.
http://aip.metastore.ingenta.com/content/asa/journal/jasa/140/1/10.1121/1.4955005
Loading
/content/asa/journal/jasa/140/1/10.1121/1.4955005
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/asa/journal/jasa/140/1/10.1121/1.4955005
2016-07-19
2016-09-26

Abstract

A model for the loudness of time-varying sounds [Glasberg and Moore (2012). J. Audio. Eng. Soc. , 331–342] was assessed for its ability to predict the loudness of sentences that were processed to either decrease or increase their dynamic fluctuations. In a paired-comparison task, subjects compared the loudness of unprocessed and processed sentences that had been equalized in (1) root-mean square (RMS) level; (2) the peak long-term loudness predicted by the model; (3) the mean long-term loudness predicted by the model. Method 2 was most effective in equating the loudness of the original and processed sentences.

Loading

Full text loading...

/deliver/fulltext/asa/journal/jasa/140/1/1.4955005.html;jsessionid=C1OpGhe6HL0UPGYhAesVmHLg.x-aip-live-02?itemId=/content/asa/journal/jasa/140/1/10.1121/1.4955005&mimeType=html&fmt=ahah&containerItemId=content/asa/journal/jasa
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=asadl.org/jasa/140/1/10.1121/1.4955005&pageURL=http://scitation.aip.org/content/asa/journal/jasa/140/1/10.1121/1.4955005'
Right1,Right2,Right3,