Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/asa/journal/jasa/140/1/10.1121/1.4958983
1.
M. Siderius, C. H. Harrison, and M. B. Porter, “ A passive fathometer technique for imaging seabed layering using ambient noise,” J. Acoust. Soc. Am. 120(3), 13151323 (2006).
http://dx.doi.org/10.1121/1.2227371
2.
C. H. Harrison and M. Siderius, “ Bottom profiling by correlating beam-steered noise sequences,” J. Acoust. Soc. Am. 123(3), 12821296 (2008).
http://dx.doi.org/10.1121/1.2835416
3.
P. Gerstoft, W. S. Hodgkiss, M. Siderius, C.-F. Huang, and C. H. Harrison, “ Passive fathometer processing,” J. Acoust. Soc. Am. 123, 12971305 (2008).
http://dx.doi.org/10.1121/1.2831930
4.
C. H. Harrison, “ Anomalous signed passive fathometer impulse response when using adaptive beam forming,” J. Acoust. Soc. Am. 125(6), 35113513 (2009).
http://dx.doi.org/10.1121/1.3126345
5.
J. Traer, P. Gerstoft, H. C. Song, and W. S. Hodgkiss, “ On the sign of the adaptive passive fathometer impulse response,” J. Acoust. Soc. Am. 126(4), 16571658 (2009).
http://dx.doi.org/10.1121/1.3206696
6.
M. Siderius, H. Song, P. Gerstoft, W. S. Hodgkiss, P. Hursky, and C. Harrison, “ Adaptive passive fathometer processing,” J. Acoust. Soc. Am. 127(4), 21932200 (2010).
http://dx.doi.org/10.1121/1.3303985
7.
J. Gebbie, M. Siderius, L. Muzi, and J. Paddock, “ Extracting the Rayleigh reflection coefficient from the passive fathometer,” in OCEANS 2010, September 2010, pp. 110.
8.
J. Traer, P. Gerstoft, and W. S. Hodgkiss, “ Ocean bottom profiling with ambient noise: A model for the passive fathometer,” J. Acoust. Soc. Am. 129(4), 18251836 (2011).
http://dx.doi.org/10.1121/1.3552871
9.
C. Yardim, P. Gerstoft, W. S. Hodgkiss, and J. Traer, “ Compressive geoacoustic inversion using ambient noise,” J. Acoust. Soc. Am. 135(3), 12451255 (2014).
http://dx.doi.org/10.1121/1.4864792
10.
Z.-H. Michalopoulou, C. Yardim, and P. Gerstoft, “ Particle filtering for passive fathometer tracking,” J. Acoust. Soc. Am. 131(1), EL74EL80 (2012).
http://dx.doi.org/10.1121/1.3670004
11.
Z.-H. Michalopoulou and M. Picarelli, “ Gibbs sampling for time-delay-and amplitude estimation in underwater acoustics,” J. Acoust. Soc. Am. 117(2), 799808 (2005).
http://dx.doi.org/10.1121/1.1847894
12.
G. Box and G. Tiao, Bayesian Inference in Statistical Analysis ( Wiley, New York, 1992), pp. 1585.
13.
M. Wax and T. Kailath, “ Detection of signals by information theoretic criteria,” IEEE Trans. Acoust. Speech Sign. Process. 33(2), 387392 (1985).
http://dx.doi.org/10.1109/TASSP.1985.1164557
14.
A. E. Gelfand and A. F. M. Smith, “ Sampling-based approaches to calculating marginal densities,” J. Am. Stat. Assoc. 85(410), 398409 (1990).
http://dx.doi.org/10.1080/01621459.1990.10476213
15.
C. Yardim, Z.-H. Michalopoulou, and P. Gerstoft, “ An overview of sequential Bayesian filtering in ocean acoustics,” IEEE J. Ocean. Eng. 36(1), 7189 (2011).
http://dx.doi.org/10.1109/JOE.2010.2098810
http://aip.metastore.ingenta.com/content/asa/journal/jasa/140/1/10.1121/1.4958983
Loading
/content/asa/journal/jasa/140/1/10.1121/1.4958983
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/asa/journal/jasa/140/1/10.1121/1.4958983
2016-07-25
2016-12-08

Abstract

In passive fathometer processing, the presence of wavelets in the estimate of the medium's Green's function corresponds to the location of reflectors in the seabed; amplitudes are related to seabed properties. Bayesian methods have been successful in identifying reflectors that define layer interfaces. Further work, however, revealed that phase shifts are occasionally present in the wavelets and hinder accurate layer identification for some reflectors. With a Gibbs sampler that computes probability densities of reflector depths, strengths of the reflections, and wavelet phase shifts, the significance of phase shift modeling in successful estimation of reflectors and their strengths is demonstrated.

Loading

Full text loading...

/deliver/fulltext/asa/journal/jasa/140/1/1.4958983.html;jsessionid=G-WUXNdnCxmaAFhl2FPJwU7r.x-aip-live-02?itemId=/content/asa/journal/jasa/140/1/10.1121/1.4958983&mimeType=html&fmt=ahah&containerItemId=content/asa/journal/jasa
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=asadl.org/jasa/140/1/10.1121/1.4958983&pageURL=http://scitation.aip.org/content/asa/journal/jasa/140/1/10.1121/1.4958983'
Right1,Right2,Right3,