Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
Antonov, J. I. , Seidov, D. , Boyer, T. P. , Locarnini, R. A. , Mishonov, A. V. , Garcia, H. E. , Baranova, O. K. , Zweng, M. M. , and Johnson, D. R. (2010). “ World Ocean Atlas 2009, Volume 2: Salinity,” edited by S. Levitus, in NOAA Atlas NESDIS69 ( U.S. Government Printing Office, Washington, DC), 184 pp.
Beszczynska-Möller, A. , Fahrbach, E. , Schauer, U. , and Hansen, E. (2012). “ Variability in Atlantic water temperature and transport at the entrance to the Arctic Ocean, 1997–2010,” ICES J. Mar. Sci. 69, 852863.
Chiu, C.-S. , Lynch, J. F. , and Johannessen, O. M. (1987). “ Tomographic resolution of mesoscale eddies in the marginal ice zone: A preliminary study,” J. Geophys. Res. 92, 68866902, doi:10.1029/JC092iC07p06886.
Del Grosso, V. A. (1974). “ New equation for the speed of sound in natural waters (with comparisons to other equations),” J. Acoust. Soc. Am. 56, 10841091.
De Marinis, E. , Picco, P. , and Meloni, R. (2003). “ Monitoring polynyas with ocean acoustic tomography: A feasibility study in Terra Nova Bay,” Antarct. Sci. 15, 6375.
Dushaw, B. D. , Worcester, P. F. , Cornuelle, B. D. , and Howe, B. M. (1993a). “ On equations for the speed of sound in seawater,” J. Acoust. Soc. Am. 93, 255275.
Dushaw, B. D. , Worcester, P. F. , Cornuelle, B. D. , and Howe, B. M. (1993b). “ Variability of heat content in the central North Pacific in summer 1987 determined from long-range acoustic transmissions,” J. Phys. Oceanogr. 23, 26502666.<2650:VOHCIT>2.0.CO;2
Dushaw, B. D. , Worcester, P. F. , Munk, W. H. , Spindel, R. C. , Mercer, J. A. , Howe, B. M. , Metzger, K. , Jr., Birdsall, T. G. , Andrew, R. K. , Dzieciuch, M. A. , Cornuelle, B. D. , and Menemenlis, D. (2009). “ A decade of acoustic thermometry in the North Pacific Ocean,” J. Geophys. Res. 114, C07021, doi:10.1029/2008JC005124.
Dyer, I. , Dahl, P. H. , Baggeroer, A. B. , and Mikhalevsky, P. N. (1987). “ Ocean dynamics and acoustic fluctuations in the Fram Strait marginal ice zone,” Science 236, 435436.
Fieg, K. , Gerdes, R. , Fahrbach, E. , Beszczynska-Möller, A. , and Schauer, U. (2010). “ Simulation of oceanic volume transports through Fram Strait 1995–2005,” Ocean Dyn. 60, 491502.
IOC, SCOR, and IAPSO (2010). “ The international thermodynamic equation of seawater 2010: Calculation and use of thermodynamic properties Intergovernmental Oceanographic Commission,” Manuals and Guides No. 56, UNESCO (English), 196 pp.
Jakobsson, M. , Macnab, R. , Mayer, L. , Anderson, R. , Edwards, M. , Hatzky, J. , Schenke, H.-W. , and Johnson, P. (2008). “ An improved bathymetric portrayal of the Arctic Ocean: Implications for ocean modeling and geological, geophysical and oceanographic analyses,” Geophys. Res. Lett. 35, L07602, doi:10.1029/2008GL033520.
Johannessen, J. A. , Johannessen, O. M. , Svendsen, E. , Shuchman, R. , Manley, T. , Campbell, W. J. , Josberger, E. G. , Sandven, S. , Gascard, J. C. , Olaussen, T. , Davidson, K. , and Van Leer, J. (1987). “ Mesoscale eddies in the Fram Strait marginal ice zone during the 1983 and 1984 marginal ice zone experiments,” J. Geophys. Res. 92, 67546772, doi:10.1029/JC092iC07p06754.
Johannessen, O. M. , Sagen, H. , Sandven, S. , and Stark, K. V. (2003). “ Hotspots in ambient noise caused by ice-edge eddies in the Greenland and Barents Seas,” IEEE J. Ocean. Eng. 28, 212228.
Johannessen, O. M. , Sandven, S. , Budgell, W. P. , Johannessen, J. A. , and Shuchman, R. (1994). “ Observation and simulation of ice tongues and vortex pairs in the marginal ice zone,” in The Polar Oceans and Their Role in Shaping the Global Environment, edited by O. M. Johannessen, R. D. Muench, and J. E. Overland ( American Geophysical Union, Washington, DC), pp. 109136.
Langehaug, H. R. , and Falck, E. (2011). “ Changes in the properties and distribution of the intermediate and deep waters in the Fram Strait,” Prog. Oceanogr. 96, 5776.
Locarnini, R. A. , Mishonov, A. V. , Antonov, J. I. , Boyer, T. P. , Garcia, H. E. , Baranova, O. K. , Zweng, M. M. , and Johnson, D. R. (2010). “ World Ocean Atlas 2009,” Volume 1: Temperature, edited by S. Levitus, in NOAA Atlas NESDIS68 ( U.S. Government Printing Office, Washington, DC), 184 pp.
Mackenzie, K. V. (1981). “ Nine-term equations for sound speed in the oceans,” J. Acoust. Soc. Am. 70, 807812.
Mellberg, L. E. , Johannessen, O. M. , Connors, D. N. , Botseas, G. , and Browning, D. (1987). “ Modeled acoustic propagation through an ice edge eddy in the East Greenland Sea marginal ice zone,” J. Geophys. Res. 92, 68576868, doi:10.1029/JC092iC07p06857.
Mellberg, L. E. , Johannessen, O. M. , Connors, D. N. , Botseas, G. , and Browning, D. G. (1991). “ Acoustic propagation in the western Greenland Sea frontal zone,” J. Acoust. Soc. Am. 89, 21442156.
Mikhalevsky, P. , Sagen, H. , Worcester, P. , Baggeroer, A. B. , Orcutt, J. , Moore, S. , Lee, C. , Vigness-Raposa, K. , Freitag, L. , Arrott, M. , Atakan, K. , Beszczynska-Möller, A. , Duda, T. , Dushaw, B. , Gascard, J. , Gavrilov, A. , Keers, H. , Morozov, A. , Munk, W. , Rixen, M. , Sandven, S. , Skarsoulis, E. , Stafford, K. , Vernon, F. , and Yuen, M. (2015). “ Multipurpose acoustic networks in the Integrated Arctic Ocean Observing System,” Arctic 68, 1127.
Munk, W. , Worcester, P. , and Wunsch, C. (1995). Ocean Acoustic Tomography ( Cambridge University Press, Cambridge, UK), 456 pp.
Naugolnyck, K. A. , Johannessen, O. M. , Esipov, I. B. , Ovchinnikov, O. B. , Tuzkilkin, Y. I. , and Zosimov, V. V. (1998). “ Numerical simulation of remote acoustic sensing of ocean temperature in the Fram Strait environment,” J. Acoust. Soc. Am. 104, 738746.
Sagen, H. , Dushaw, B. D. , Dumont, D. , and Beszczynska-Möller, A. (2016). “ Determining time series of temperature from tomography data obtained during the 2008–2009 DAMOCLES experiment in Fram Strait,” J. Geophys. Res. 121, doi:10.1002/2015JC011591.
Sandven, S. , Johannessen, O. M. , and Johannessen, J. A. (1991). “ Meoscale eddies and chimneys in the marginal ice zone,” J. Mar. Syst. 2, 195208.
Schauer, U. , Beszczynska-Möller, A. , Walczowski, W. , Fahrbach, E. , Plechura, J. , and Hansen, E. (2008). “ Variation of measured heat flow through the Fram Strait between 1997 and 2006,” in Arctic-Subarctic Ocean Fluxes, edited by R. R. Dickson, J. Meineke, and P. Rhines ( Springer, Netherlands), pp. 6585.
Skarsoulis, E. , Piperakis, G. , Kalogerakis, M. , Sagen, H. , Haugen, S. , Beszczynska-Möller, A. , and Worcester, P. (2010). “ Tomographic inversions from the Fram Strait 2008–9 experiment,” in Proceedings of the European Conference on Underwater Acoustics, 5–9 July 2010, Istanbul, Turkey, pp. 265271.
Sutton, P. , Morawitz, W. M. L. , Cornuelle, B. D. , Masters, G. , and Worcester, P. F. (1994). “ Incorporation of acoustic normal mode data into tomographic inversions in the Greenland Sea,” J. Geophys. Res. 99, 1248712502, doi:10.1029/94JC00210.
von Appen, W.-J. , Schauer, U. , Hattermann, T. , and Beszczynska-Möller, A. (2016). “ Seasonal cycle of mesoscale instability of the West Spitsbergen Current,” J. Phys. Oceanogr. 46, 12311254.
Walczowski, W. (2013). “ Frontal structures in the West Spitsbergen Current margins,” Ocean Sci. 9, 957975.

Data & Media loading...


Article metrics loading...



The application of ocean acoustic tomography in Fram Strait requires a careful assessment of the accuracy to which estimates of sound speed from tomography can be converted to estimates of temperature. The Fram Strait environment is turbulent, with warm, salty, northward-flowing North Atlantic water interacting with cold, fresh, southward-flowing Arctic water. The nature of this environment suggests that salinity could play an important role with respect to sound speed. The properties of sound speed with respect to temperature and salinity in this environment were examined using climatological and glider data. In cold water, a factor of about 4.5 m s−1 °C−1 can be used to scale between sound speed and temperature. data obtained by gliders were used to determine the ambiguities between temperature, salinity, and sound speed. Tomography provides a depth-averaging measurement. While errors in the sound speed-temperature conversion at particular depths may be 0.2 °C or larger, particularly within 50 m of the surface, such errors are suppressed when the depth is averaged. Using a simple scale factor to compute temperature from sound speed introduced an error of about 20 m °C for depth-averaged temperature, a value less than formal uncertainties estimated from acoustic tomography.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd