Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/asa/journal/jasa/140/2/10.1121/1.4959966
1.
P. J. Westervelt, “ The theory of steady forces caused by sound waves,” J. Acoust. Soc. Am 23, 312315 (1951).
http://dx.doi.org/10.1121/1.1906764
2.
P. J. Westervelt, “ Acoustical radiation pressure,” J. Acoust. Soc. Am 29, 2629 (1957).
http://dx.doi.org/10.1121/1.1908669
3.
H. Olsen, W. Romberg, and H. Wergeland, “ Radiation force on bodies in a sound field,” J. Acoust. Soc. Am. 30, 6976 (1958).
http://dx.doi.org/10.1121/1.1909390
4.
H. Olsen, H. Wergeland, and P. J. Westervelt, “ Acoustic radiation force,” J. Acoust. Soc. Am. 30, 633634 (1958).
http://dx.doi.org/10.1121/1.1909718
5.
T. Hasegawa, “ Comparison of two solutions for acoustic radiation pressure on a sphere,” J. Acoust. Soc. Am. 61, 14451448 (1977).
http://dx.doi.org/10.1121/1.381460
6.
T. Hasegawa and Y. Watanabe, “ Acoustic radiation pressure on an absorbing sphere,” J. Acoust. Soc. Am. 63, 17331737 (1978).
http://dx.doi.org/10.1121/1.381912
7.
X. Chen and R. E. Apfel, “ Radiation force on a spherical object in an axisymmetric wave field and its application to the calibration of high-frequency transducers,” J. Acoust. Soc. Am. 99, 713724 (1996).
http://dx.doi.org/10.1121/1.414648
8.
P. L. Marston, “ Axial radiation force of a Bessel beam on a sphere and direction reversal of the force,” J. Acoust. Soc. Am. 120, 35183524 (2006).
http://dx.doi.org/10.1121/1.2361185
9.
L. K. Zhang and P. L. Marston, “ Geometrical interpretation of negative radiation forces of acoustical Bessel beams on spheres,” Phys. Rev. E 84, 035601(R) (2011).
http://dx.doi.org/10.1103/PhysRevE.84.035601
10.
L. K. Zhang and P. L. Marston, “ Axial radiation force exerted by general non-diffracting beams,” J. Acoust. Soc. Am. 131, EL329EL335 (2012).
http://dx.doi.org/10.1121/1.3693387
11.
L. K. Zhang and P. L. Marston, “ Optical theorem for acoustic non-diffracting beams and application to radiation force and torque,” Biomed. Opt. Express 4, 16101617 (2013).
http://dx.doi.org/10.1364/BOE.4.001610
12.
G. T. Silva, “ An expression for the radiation force exerted by an acoustic beam with arbitrary wavefront,” J. Acoust. Soc. Am. 130, 35413544 (2011).
http://dx.doi.org/10.1121/1.3652894
13.
D. Baresch, J.-L. Thomas, and R. Marchiano, “ Three-dimensional acoustic radiation force on an arbitrarily located elastic sphere,” J. Acoust. Soc. Am. 133, 2536 (2013).
http://dx.doi.org/10.1121/1.4770256
14.
O. A. Sapozhnikov and M. R. Bailey, “ Radiation force of an arbitrary acoustic beam on an elastic sphere in a fluid,” J. Acoust. Soc. Am. 133, 661676 (2013).
http://dx.doi.org/10.1121/1.4773924
15.
Y. A. Ilinskii, E. A. Zabolotskaya, and M. F. Hamilton, “ Acoustic radiation force on a sphere without restriction to axisymmetric fields,” Proc. Meet. Acoust. 19, 045004 (2013).
http://dx.doi.org/10.1121/1.4799596
16.
L. I. Schiff, Quantum Mechanics, 3rd ed. ( McGraw-Hill, New York, 1968), pp. 131133.
17.
N. F. Mott and H. S. W. Massey, The Theory of Atomic Collisions ( University Press, Oxford, 1965), pp. 631633.
18.
J. A. Bittencourt, Fundamentals of Plasma Physics, 3rd ed. ( Springer, Berlin, 2004), pp. 601603.
19.
J. H. Crichton, “ Phase-shift ambiguities for spin-independent scattering,” Nuovo Cimento A 45, 256258 (1966).
http://dx.doi.org/10.1007/BF02738098
20.
P. L. Marston, “ Quasi-scaling of the extinction efficiency of a sphere in high frequency Bessel beams,” J. Acoust. Soc. Am. 135, 16681671 (2014).
http://dx.doi.org/10.1121/1.4868399
http://aip.metastore.ingenta.com/content/asa/journal/jasa/140/2/10.1121/1.4959966
Loading
/content/asa/journal/jasa/140/2/10.1121/1.4959966
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/asa/journal/jasa/140/2/10.1121/1.4959966
2016-08-02
2016-09-30

Abstract

Acoustic radiation force is expressed using complex phase shifts of partial wave scattering functions and the momentum-transfer cross section, herein incorporated into acoustics from quantum mechanisms. Imaginary parts of the phase shifts represent dissipation in the object and/or in the boundary layer adjacent to the object. The formula simplifies the force as summation of functions of complex phase shifts of adjacent partial waves involving differences of real parts and sums of imaginary parts, providing an efficient way of exploring the force parameter-space. The formula for the force is proportional to a generalized momentum-transfer cross section for plane waves and no dissipation.

Loading

Full text loading...

/deliver/fulltext/asa/journal/jasa/140/2/1.4959966.html;jsessionid=wseaOfpQuxn_wW7OJLZEdmpS.x-aip-live-03?itemId=/content/asa/journal/jasa/140/2/10.1121/1.4959966&mimeType=html&fmt=ahah&containerItemId=content/asa/journal/jasa
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=asadl.org/jasa/140/2/10.1121/1.4959966&pageURL=http://scitation.aip.org/content/asa/journal/jasa/140/2/10.1121/1.4959966'
Right1,Right2,Right3,