Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/asa/journal/jasa/140/2/10.1121/1.4960572
1.
Bernstein, L. R. , and Trahiotis, C. (1985). “ Lateralization of sinusoidally amplitude-modulated tones: Effects of spectral locus and temporal variation,” J. Acoust. Soc. Am. 78, 514523.
http://dx.doi.org/10.1121/1.392473
2.
Bernstein, L. R. , and Trahiotis, C. (2002). “ Enhancing sensitivity to interaural delays at high frequencies by using ‘transposed stimuli,’ ” J. Acoust. Soc. Am. 112(3): 10261036.
http://dx.doi.org/10.1121/1.1497620
3.
Bernstein, L. R. , and Trahiotis, C. (2003). “ Enhancing interaural-delay-based extents of laterality at high frequencies by using ‘transposed stimuli,’ ” J. Acoust. Soc. Am. 113, 33353347.
http://dx.doi.org/10.1121/1.1570431
4.
Bernstein, L. R. , and Trahiotis, C. (2009). “ How sensitivity to ongoing interaural temporal disparities is affected by manipulations of temporal features of the envelopes of high-frequency stimuli,” J. Acoust. Soc. Am. 125, 32343242.
http://dx.doi.org/10.1121/1.3101454
5.
Bernstein, L. R. , and Trahiotis, C. (2011a). “ Lateralization produced by envelope-based interaural temporal disparities of high-frequency, raised-sine stimuli: Empirical data and modeling,” J. Acoust. Soc. Am. 129, 15011508.
http://dx.doi.org/10.1121/1.3552875
6.
Bernstein, L. R. , and Trahiotis, C. (2011b). “ Lateralization produced by interaural intensitive disparities appears to be larger for high- vs low-frequency stimuli,” J. Acoust. Soc. Am. 129, EL15EL20.
http://dx.doi.org/10.1121/1.3528756
7.
Bernstein, L. R. , and Trahiotis, C. (2011c). “ Lateralization produced by interaural temporal and intensitive disparities of high-frequency, raised-sine stimuli: Data and modeling,” J. Acoust. Soc. Am. 131, 409415.
http://dx.doi.org/10.1121/1.3662056
8.
Blauert, J. , Bruggen, M. , Hartung, K. , Bronkhorst, A. , Drullmann, R. , Reynaud, G. , Pellieux, L. , Krebber, W. , and Sotteck, R. (1998). “ The AUDIS catalog of human HRTFs,” in 16th Int. Congr. Acoust., ICA, Inst. of Physics, New York.
9.
Boyd, A. W. , Whitmer, W. M. , Brimijoin, W. O. , and Akeroyd, M. A. (2013). “ Improved estimation of direction of arrival of sound sources for hearing aids using gyroscopic information,” Proc. Mtgs. Acoust. 19, 030046.
http://dx.doi.org/10.1121/1.4799684
10.
Cosentino, S. , Marquardt, T. , and McAlpine, D. (2012). “ A hybrid channel selection algorithm for dereverberation in cochlear implants,” in 35th Mid-Winter Meeting Association for Research in Otolaryngology, San Diego, CA.
11.
Faller, C. , and Merimaa, J. (2004). “ Source localization in complex listening situations: Selection of binaural cues based on interaural coherence,” J. Acoust. Soc. Am. 116, 30753089.
http://dx.doi.org/10.1121/1.1791872
12.
Flanagan, J. L. (1960). “ Analog measurements of sound radiation from the mouth,” J. Acoust. Soc. Am. 32(12), 16131620.
http://dx.doi.org/10.1121/1.1907972
13.
Francart, T. , Lenssen, A. , and Wouters, J. (2014). “ Modulation enhancement in the electrical signal improves perception of interaural time differences with bimodal stimulation,” J. Assoc. Res. Otolaryngol. 15(4), 633647.
http://dx.doi.org/10.1007/s10162-014-0457-9
14.
Geurts, L. , and Wouters, J. (2001). “ Coding of the fundamental frequency in continuous interleaved sampling processors for cochlear implants,” J. Acoust. Soc. Am. 109, 713726.
http://dx.doi.org/10.1121/1.1340650
15.
Green, T. , Faulkner, A. , and Rosen, S. (2004). “ Enhancing temporal cues to voice pitch in continuous interleaved sampling cochlear implants,” J. Acoust. Soc. Am. 116, 22982310.
http://dx.doi.org/10.1121/1.1785611
16.
Hartley, D. E. H. , and Isaiah, A. (2014). “ Envelope enhancement increases cortical sensitivity to interaural envelope delays with acoustic and electric hearing,” PLoS One 9(8), e104097.
http://dx.doi.org/10.1371/journal.pone.0104097
17.
Hazrati, O. , Lee, J. , and Loizou, P. C. (2013). “ Blind binary masking for reverberation suppression in cochlear implants,” J. Acoust. Soc. Am. 133, 16071614.
http://dx.doi.org/10.1121/1.4789891
18.
Jeub, M. , Dorbecker, M. , and Vary, P. (2011). “ A semi-analytical model for the binaural coherence of noise fields,” IEEE Signal Process. Lett. 18, 197200.
http://dx.doi.org/10.1109/LSP.2011.2108284
19.
Kerber, S. , and Seeber, B. U. (2013). “ Localization in reverberation with cochlear implants,” J. Assoc. Res. Otolaryngol. 14, 379392.
http://dx.doi.org/10.1007/s10162-013-0378-z
20.
Klein-Hennig, M. , Dietz, M. , Hohmann, V. , and Ewert, S. D. (2011). “ The influence of different segments of the ongoing envelope waveform on sensitivity to interaural time differences,” J. Acoust. Soc. Am. 129, 38563872.
http://dx.doi.org/10.1121/1.3585847
21.
Kokkinakis, K. , Hazrati, O. , and Loizou, P. C. (2011). “ A channel-selection criterion for suppressing reverberation in cochlear implants,” J. Acoust. Soc. Am. 129, 32213232.
http://dx.doi.org/10.1121/1.3559683
22.
Kokkinakis, K. , and Loizou, P. C. (2008). “ Using blind source separation techniques to improve speech recognition in bilateral cochlear implant patients,” J. Acoust. Soc. Am. 123, 23792390.
http://dx.doi.org/10.1121/1.2839887
23.
Koning, R. , and Wouters, J. (2012). “ The potential of onset enhancement for increased speech intelligibility in auditory prostheses,” J. Acoust. Soc. Am. 132, 25692581.
http://dx.doi.org/10.1121/1.4748965
24.
Laback, B. , Majdak, P. , and Baumgartner, W.-D. (2007). “ Lateralization discrimination of interaural time delays in four-pulse sequences in electric and acoustic hearing,” J. Acoust. Soc. Am. 121, 21822191.
http://dx.doi.org/10.1121/1.2642280
25.
Laback, B. , Zimmermann, I. , Majdak, P. , Baumgartner, W. D. , and Pok, S. M. (2011). “ Effects of envelope shape on interaural envelope delay sensitivity in acoustic and electric hearing,” J. Acoust. Soc. Am. 130, 15151529.
http://dx.doi.org/10.1121/1.3613704
26.
Levitt, H. (1971). “ Transformed up-down methods in psychoacoustics,” J. Acoust. Soc. Am. 49, 467477.
http://dx.doi.org/10.1121/1.1912375
27.
Milczynski, M. , Chang, J. E. , Wouters, J. , and van Wieringen, A. (2012). “ Perception of Mandarin Chinese with cochlear implants using enhanced temporal pitch cues,” Hear. Res. 285, 112.
http://dx.doi.org/10.1016/j.heares.2012.02.006
28.
Milczynski, M. , Wouters, J. , and van Wieringen, A. (2009). “ Improved fundamental frequency coding in cochlear implant signal processing,” J. Acoust. Soc. Am. 125, 22602271.
http://dx.doi.org/10.1121/1.3085642
29.
Mills, A. W. (1958). “ On the minimum audible angle,” J. Acoust. Soc. Am. 30(4), 237247.
http://dx.doi.org/10.1121/1.1909553
30.
Monaghan, J. J. M. , Bleeck, S. , and McAlpine, D. (2015). “ Sensitivity to envelope interaural time differences at high modulation rates,” Trends Hear. 19, 114.
http://dx.doi.org/10.1177/2331216515619331
31.
Monaghan, J. J. M. , Krumbholz, K. , and Seeber, B. U. (2013). “ Factors affecting the use of envelope interaural time differences in reverberation,” J. Acoust. Soc. Am. 133, 22882300.
http://dx.doi.org/10.1121/1.4793270
32.
Moore, B. C. (2003). “ Coding of sounds in the auditory system and its relevance to signal processing and coding in cochlear implants,” Otol. Neurotol. 24, 243254.
http://dx.doi.org/10.1097/00129492-200303000-00019
33.
Poissant, S. F. , Whitmal, N. A. , 3rd, and Freyman, R. L. (2006). “ Effects of reverberation and masking on speech intelligibility in cochlear implant simulations,” J. Acoust. Soc. Am. 119, 16061615.
http://dx.doi.org/10.1121/1.2168428
34.
Rothauser, E. H. , Chapman, W. D. , Guttman, N. , Nordby, K. S. , Silbiger, H. R. , Urbanek, G. E. , and Weinstock, M. (1969). “ IEEE recommended practice for speech quality measurements,” IEEE Trans. Audio Electroacoust. 17, 227246.
http://dx.doi.org/10.1109/IEEESTD.1969.7405210
35.
Seeber, B. U. , and Fastl, H. (2008). “ Localization cues with bilateral cochlear implants,” J. Acoust. Soc. Am. 123, 10301042.
http://dx.doi.org/10.1121/1.2821965
36.
Seeber, B. U. , and Hafter, E. R. (2011). “ Failure of the precedence effect with a noise-band vocoder,” J. Acoust. Soc. Am. 129(3), 15091521.
http://dx.doi.org/10.1121/1.3531836
37.
Seeber, B. U. , Kerber, S. , and Hafter, E. R. (2010). “ A system to simulate and reproduce audio-visual environments for spatial hearing research,” Hear. Res. 260, 110.
http://dx.doi.org/10.1016/j.heares.2009.11.004
38.
Tsilfidis, A. , Georganti, E. , Kokkinis, E. K. , and Mourjopoulos, J. (2011). “ Speech dereverberation based on a recorded handclap,” in 2011 17th International Conference on Digital Signal Processing (DSP), pp. 16.
39.
Tsilfidis, A. , and Mourjopoulos, J. (2012). “ Blind single-channel suppression of late reverberation based on perceptual reverberation modeling,” J. Acoust. Soc. Am. 129, 14391451.
http://dx.doi.org/10.1121/1.3533690
40.
van Hoesel, R. J. , and Tyler, R. S. (2003). “ Speech perception, localization, and lateralization with bilateral cochlear implants,” J. Acoust. Soc. Am. 113, 16171630.
http://dx.doi.org/10.1121/1.1539520
41.
Verschuur, C. , Lutman, M. , and Wahat, N. H. (2006). “ Evaluation of a non-linear spectral subtraction noise suppression scheme in cochlear implant users,” Cochlear Implants Int. 7, 193196.
http://dx.doi.org/10.1002/cii.318
42.
Wittkop, T. , Albani, S. , Hohmann, V. , Peissig, J. , Woods, W. S. , and Kollmeier, B. (1997). “ Speech processing for hearing aids: Noise reduction motivated by models of binaural interaction,” Acta Acust. Acust. 83, 684699.
43.
Wu, M. , and Wang, D. L. (2006). “ A two-stage algorithm for one microphone reverberant speech enhancement,” IEEE Trans. Audio Speech Lang. Process. 14, 774784.
http://dx.doi.org/10.1109/TSA.2005.858066
http://aip.metastore.ingenta.com/content/asa/journal/jasa/140/2/10.1121/1.4960572
Loading
/content/asa/journal/jasa/140/2/10.1121/1.4960572
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/asa/journal/jasa/140/2/10.1121/1.4960572
2016-08-17
2016-12-08

Abstract

The ability of normal-hearing (NH) listeners to exploit interaural time difference (ITD) cues conveyed in the modulated envelopes of high-frequency sounds is poor compared to ITD cues transmitted in the temporal fine structure at low frequencies. Sensitivity to envelope ITDs is further degraded when envelopes become less steep, when modulation depth is reduced, and when envelopes become less similar between the ears, common factors when listening in reverberant environments. The vulnerability of envelope ITDs is particularly problematic for cochlear implant (CI) users, as they rely on information conveyed by slowly varying amplitude envelopes. Here, an approach to improve access to envelope ITDs for CIs is described in which, rather than attempting to reduce reverberation, the perceptual saliency of cues relating to the source is increased by selectively sharpening peaks in the amplitude envelope judged to contain reliable ITDs. Performance of the algorithm with room reverberation was assessed through simulating listening with bilateral CIs in headphone experiments with NH listeners. Relative to simulated standard CI processing, stimuli processed with the algorithm generated lower ITD discrimination thresholds and increased extents of laterality. Depending on parameterization, intelligibility was unchanged or somewhat reduced. The algorithm has the potential to improve spatial listening with CIs.

Loading

Full text loading...

/deliver/fulltext/asa/journal/jasa/140/2/1.4960572.html;jsessionid=qyQvloJ0mbnvL0EcDu4r1h58.x-aip-live-03?itemId=/content/asa/journal/jasa/140/2/10.1121/1.4960572&mimeType=html&fmt=ahah&containerItemId=content/asa/journal/jasa
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=asadl.org/jasa/140/2/10.1121/1.4960572&pageURL=http://scitation.aip.org/content/asa/journal/jasa/140/2/10.1121/1.4960572'
Right1,Right2,Right3,