Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/asa/journal/jasa/140/2/10.1121/1.4960784
1.
A. Petculescu and P. Achi, “ A model for the vertical sound speed and absorption profiles in Titan's atmosphere based on Cassini-Huygens data,” J. Acoust. Soc. Am. 131, 36713679 (2012).
http://dx.doi.org/10.1121/1.3699217
2.
A. Petculescu and R. Kruse, “ Predicting the characteristics of thunder on Titan: A framework to assess the detectability of lightning by acoustic sensing,” J. Geophys. Res.: Planets 119, 21672176, doi:10.1002/2014JE004663 (2014).
http://dx.doi.org/10.1002/2014JE004663
3.
D. Banfield and R. Dissly, “ A Martian sonic anemometer,” in IEEE Aerospace Conference (2005), pp. 641647.
4.
A. Cuerva and A. Sanz-Andrés, “ Sonic anemometry of planetary atmospheres,” J. Geophys. Res.: Planets 108(E4), 5029, doi:10.1029/2002JE001944 (2003).
http://dx.doi.org/10.1029/2002JE001944
5.
M. C. Towner, J. R. C. Garry, R. D. Lorenz, and J. C. Zarnecki, “ Physical properties of Titan's surface at the Huygens landing site from the Surface Science Package Acoustic Properties sensor (API-S),” Icarus 185, 457467 (2006).
http://dx.doi.org/10.1016/j.icarus.2006.07.013
6.
A. Hagermann, P. D. Rosenberg, M. C. Towner, J. R. C. Garry, H. Svedhem, M. R. Leese, B. Hathi, R. D. Lorenz, and J. C. Zarnecki, “ Speed of sound measurements and the methane abundance in Titan's atmosphere,” Icarus 189, 538543 (2007).
http://dx.doi.org/10.1016/j.icarus.2007.02.004
7.
R. D. Lorenz, M. R. Leese, B. Hathi, J. C. Zarnecki, A. Hagermann, P. Rosenberg, M. C. Towner, J. Garry, and H. Svedhem, “ Silence on Shangri-La: Attenuation of Huygens acoustic signals suggests surface volatiles,” Planet. Space Sci. 90, 7280 (2014).
http://dx.doi.org/10.1016/j.pss.2013.11.003
8.
J.-P. Williams, “ Acoustic environment of the Martian surface,” J. Geophys. Res. 106, 50335042, doi:10.1029/1999JE001174 (2001).
http://dx.doi.org/10.1029/1999JE001174
9.
S. C. R. Rafkin, J. L. Hollingsworth, M. A. Mischna, C. E. Newman, and M. I. Richardson, “ Mars: Atmosphere and Climate Overview,” in Comparative Climatology of Terrestrial Planets, edited by S. J. Mackwell, A. A. Simon-Miller, J. W. Harder, and M. A. Bullock ( University of Arizona Press, Tucson, AZ, 2013), pp. 5590.
10.
starbase.jpl.nasa.gov/archive/mpfl-m-asimet-3-rdr-surf-v1.0/mpam_0001/edl_ddr (Last viewed May 12, 2016).
11.
J. A. Magalhães, J. T. Schofield, and A. Seiff, “ Results of the Mars Pathfinder atmospheric structure investigation,” J. Geophys. Res. 104, 89438955, doi:10.1029/1998JE900041 (1999).
http://dx.doi.org/10.1029/1998JE900041
12.
R. Hu, K. Cahoy, and M. T. Zuber, “ Mars atmospheric CO2 condensation above the north and south poles as revealed by radio occultation, climate sounder, and laser ranging observations,” J. Geophys. Res. 117, E07002, doi:10.1029/2012JE004087 (2012).
http://dx.doi.org/10.1029/2012JE004087
13.
J. A. Whiteway, L. Komguem, C. Dickinson, C. Cook, M. Illnicki, J. Seabrook, V. Popovici, T. J. Duck, R. Davy, P. A. Taylor, J. Pathak, D. Fisher, A. I. Carswell, M. Daly, V. Hipkin, A. P. Zent, M. H. Hecht, S. E. Wood, L. K. Tamppari, N. Renno, J. E. Moores, M. T. Lemmon, F. Daerden, and P. H. Smith, “ Mars water-ice clouds and precipitation,” Science 325, 6870 (2009).
http://dx.doi.org/10.1126/science.1172344
14.
S. Tellmann, M. Pätzold, B. Häusler, D. P. Hinson, and G. L. Tyler, “ The structure of Mars lower atmosphere from Mars Express Radio Science (MaRS) occultation measurements,” J. Geophys. Res.: Planets 118, 306320, doi:10.1002/jgre.20058 (2013).
http://dx.doi.org/10.1002/jgre.20058
15.
D. P. Hinson, R. A. Simpson, J. D. Twicken, G. L. Tyler, and F. M. Flasar, “ Initial results from radio occultation measurements with Mars Global Surveyor,” J. Geophys. Res. 104, 2699727012, doi:10.1029/1999JE001069 (1999).
http://dx.doi.org/10.1029/1999JE001069
16.
A. Petrosyan, B. Galperin, S. E. Larsen, S. R. Lewis, A. Määttänen, P. L. Read, N. Rennó, L. P. H. T. Rogberg, H. Savijärvi, T. Siili, A. Spiga, A. Toigo, and L. Vázquez, “ The Martian atmospheric boundary layer,” Rev. Geophys. 49, RG3005, doi:10.1029/2010RG000351 (2011).
http://dx.doi.org/10.1029/2010RG000351
17.
H. E. Bass and J. P. Chambers, “ Absorption of sound in the Martian atmosphere,” J. Acoust. Soc. Am. 109, 30693071 (2001).
http://dx.doi.org/10.1121/1.1365424
18.
A. Petculescu and R. M. Lueptow, “ Fine-tuning molecular acoustic models: Sensitivity of the predicted attenuation to the Lennard-Jones parameters,” J. Acoust. Soc. Am. 117, 175184 (2005).
http://dx.doi.org/10.1121/1.1828547
19.
A. Akintunde and A. Petculescu, “ Infrasonic attenuation in the upper mesosphere–lower thermosphere: A comparison between Navier-Stokes and Burnett predictions,” J. Acoust. Soc. Am. 136, 14831486 (2014).
http://dx.doi.org/10.1121/1.4894683
20.
A. Godin, “ Dissipation of acoustic-gravity waves: An asymptotic approach,” J. Acoust. Soc. Am. 136, EL411EL417 (2014).
http://dx.doi.org/10.1121/1.4902426
21.
C. E. Newman, S. R. Lewis, P. L. Read, and F. Forget, “ Modeling the Martian dust cycle, 1. Representations of dust transport processes,” J. Geophys. Res.: Planets 107(E12), 6-1-6-18, doi:10.1029/2002JE001910 (2002).
http://dx.doi.org/10.1029/2002JE001910
22.
C. E. Newman, S. R. Lewis, P. L. Read, and F. Forget, “ Modeling the Martian dust cycle, 2. Multiannual radiatively active dust transport simulation,” J. Geophys. Res.: Planets 107(E12), 7-1-7-15, doi:10.1029/2002JE001920 (2002).
http://dx.doi.org/10.1029/2002JE001920
23.
R. M. Haberle, C. B. Leovy, and J. B. Pollack, “ Some effects of global dust storms on the atmospheric circulation of Mars,” Icarus 50, 322367 (1982).
http://dx.doi.org/10.1016/0019-1035(82)90129-4
24.
R. J. Wilson, “ A general circulation model simulation of the Martian polar warming,” Geophys. Res. Lett. 24, 123126, doi:10.1029/96GL03814 (1997).
http://dx.doi.org/10.1029/96GL03814
25.
S. Basu, M. I. Richardson, and R. J. Wilson, “ Simulation of the Martian dust cycle with the GFDL Mars GCM,” Geophys. Res. Lett. 109, E11006, doi:10.1029/2004JE002243 (2004).
http://dx.doi.org/10.1029/2004JE002243
26.
A. J. Bedard, “ Low-frequency atmospheric acoustic energy associated with vortices produced by thunderstorms,” Monthly Weather Rev. 133, 241263 (2005).
http://dx.doi.org/10.1175/MWR-2851.1
27.
A. J. Abdullah, “ The musical sound emitted by a tornado,” Monthly Weather Rev. 94, 213220 (1966).
http://dx.doi.org/10.1175/1520-0493(1966)094<0213:TMSEBA>2.3.CO;2
28.
N. O. Rennó and A. P. Ingersoll, “ Natural convection as a heat engine: A theory for CAPE,” J. Atmos. Sci. 53, 572585 (1996).
http://dx.doi.org/10.1175/1520-0469(1996)053<0572:NCAAHE>2.0.CO;2
29.
N. O. Rennó, M. L. Burkett, and M. P. Larkin, “ Acoustic spectral analysis of three tornadoes,” J. Atmos. Sci. 55, 32443252 (1998).
http://dx.doi.org/10.1175/1520-0469(1998)055<3244:ASTTFD>2.0.CO;2
30.
M. Balme and R. Greeley, “ Dust devils on Earth and Mars,” Rev. Geophys. 44, RG3003, doi:10.1029/2005RG000188 (2006).
http://dx.doi.org/10.1029/2005RG000188
31.
J. R. Noble, W. C. Kirkpatrick Alberts, I. I., S. L. Collier, R. Raspet, and M. A. Coleman, “ Wind noise suppression for infrasound sensors,” Army Research Laboratory technical report No. ARL-TR-6873 (2014).
32.
M. Y. Marov, V. S. Avduevskij, V. V. Kerzhanovich, M. K. Rozhdestvenskij, N. F. Borodin, and O. L. Ryabov, “ Venera 8: Measurements of the temperature, pressure and wind velocity on the illuminated side of Venus,” J. Atmos. Sci. 30, 12101214 (1973).
http://dx.doi.org/10.1175/1520-0469(1973)030<1210:VMOTPA>2.0.CO;2
33.
V. S. Avduevskii, N. F. Borodin, V. P. Burtsev, I. V. Malkov, M. I. Marov, S. F. Morozov, M. K. Rozhdestvenskii, R. S. Romanov, S. S. Sokolov, and V. G. Fokin, “ Automatic probes Venera 9 and Venera 10—Functioning of descent vehicles and measurement of atmospheric parameters,” Kosmicheskie Issledovaniia 14, 655666 (1976).
34.
A. Seiff, “ Thermal structure of the atmosphere of Venus,” in Venus, edited by D. M. Hunten, L. Colin, T. M. Donahue, and V. I. Moroz ( University of Arizona Press, Tucson, AZ, 1983), pp. 215279.
35.
W. J. Markiewicz, E. Petrova, O. Shalygina, M. Almeida, D. V. Titov, S. S. Limaye, N. Ignatiev, T. Roatsch, and K. D. Matz, “ Glory on Venus cloud tops and the unknown UV absorber,” Icarus 234, 200203 (2014).
http://dx.doi.org/10.1016/j.icarus.2014.01.030
36.
V. M. Linkin, V. V. Kerzhanovich, A. N. Lipatov, K. M. Pichkadze, A. A. Shurupov, A. V. Terterashvili, A. P. Ingersoll, D. Crisp, A. W. Grossman, R. E. Young, A. Seiff, B. Ragent, J. E. Blamont, L. S. Elson, and R. A. Preston, “ VEGA balloon dynamics and vertical winds in the Venus middle cloud region,” Science 231, 14171419 (1986).
http://dx.doi.org/10.1126/science.231.4744.1417
37.
J. E. Blamont, R. E. Young, A. Seiff, B. Ragent, R. Sagdeev, V. M. Linkin, V. V. Kerzhanovich, A. P. Ingersoll, D. Crisp, L. S. Elson, R. A. Preston, G. S. Golitsyn, and V. N. Ivanov, “ Implications of the VEGA balloon results for Venus atmospheric dynamics,” Science 231, 14221425 (1986).
http://dx.doi.org/10.1126/science.231.4744.1422
38.
S. Tellmann, M. Pätzold, B. Häusler, M. K. Bird, and G. L. Tyler, “ Structure of the Venus neutral atmosphere as observed by the Radio Science Experiment VeRa on Venus Express,” J. Geophys. Res.: Planets 114, E00B36, doi:10.1029/2008JE003204 (2009).
http://dx.doi.org/10.1029/2008JE003204
39.
D. Ehrenreich, A. Vidal-Madjar, T. Widemann, G. Gronoff, P. Tanga, M. Barthélemy, J. Lilensten, A. Lecavelier Des Etangs, and L. Arnold, “ Transmission spectrum of Venus as a transiting exoplanet,” Astron. Astrophys. 537, L2 (2012).
http://dx.doi.org/10.1051/0004-6361/201118400
40.
A. Petculescu and R. M. Lueptow, “ Atmospheric acoustics of Titan, Mars, Venus, and Earth,” Icarus 186, 413419 (2007).
http://dx.doi.org/10.1016/j.icarus.2006.09.014
41.
R. Garcia, P. Lognonné, and X. Bonnin, “ Detecting atmospheric perturbations produced by Venus quakes,” Geophys. Res. Lett. 32, L16205, doi:10.1029/2005GL023558 (2005).
http://dx.doi.org/10.1029/2005GL023558
42.
Y. Bar-Cohen, High Temperature Materials and Mechanisms ( CRC Press, Boca Raton, FL, 2014).
43.
D. Krsmanovic, “ High temperature ultrasonic gas flow sensor based on lead free piezoelectric material,” Ph.D. Dissertation, University of Cambridge, 2011.
44.
M. Baudoin, F. Coulouvrat, and J.-L. Thomas, “ Sound, infrasound, and sonic boom absorption by atmospheric clouds,” J. Acoust. Soc. Am. 130, 11421153 (2011).
http://dx.doi.org/10.1121/1.3619789
http://aip.metastore.ingenta.com/content/asa/journal/jasa/140/2/10.1121/1.4960784
Loading
/content/asa/journal/jasa/140/2/10.1121/1.4960784
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/asa/journal/jasa/140/2/10.1121/1.4960784
2016-08-31
2016-12-09

Abstract

Generic predictions for acoustic dispersion and absorption in the atmospheres of Mars and Venus are presented. For Mars, and ambient data and averaged thermophysical parameters are used as inputs to a preliminary model based on the continuum approximation for Mars' thin atmosphere—the need for Boltzmann-based treatment is discussed in the context of Knudsen numbers. Strong absorption constrains acoustic sensing within the Martian planetary boundary layer. For the dense atmosphere of Venus, the van der Waals equation of state is used. The thermophysical and transport parameters were interpolated at the ambient conditions. Acoustic sensing is discussed at 50 km above Venus' surface, a level where aerostats (e.g., European Space Agency's ) and manned airships (e.g., NASA's ) may be deployed in the future. The salient atmospheric characteristics are described in terms of temperature, pressure, and convective stability profiles, followed by wavenumber predictions, and discussions of low- and high-frequency sensing applications. At low frequencies, emphasis is placed on infrasound. A simple generation mechanism by Martian dust devils is presented, yielding fundamental frequencies between 0.1 and 10 Hz. High-frequency sensing is exemplified by ultrasonic anemometry. Of the two environments, Venus is notably more dispersive in the ultrasonic range.

Loading

Full text loading...

/deliver/fulltext/asa/journal/jasa/140/2/1.4960784.html;jsessionid=p4YVMAAtl0dy2R4buRXdLNNi.x-aip-live-06?itemId=/content/asa/journal/jasa/140/2/10.1121/1.4960784&mimeType=html&fmt=ahah&containerItemId=content/asa/journal/jasa
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=asadl.org/jasa/140/2/10.1121/1.4960784&pageURL=http://scitation.aip.org/content/asa/journal/jasa/140/2/10.1121/1.4960784'
Right1,Right2,Right3,