Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/asa/journal/jasa/140/2/10.1121/1.4960788
1.
Aki, K. , and Richards, P. G. (1980). Quantitative Seismology ( Freeman, San Francisco, CA).
2.
Artru, J. , Farges, T. , and Lognonné, P. (2004). “ Acoustic waves generated from seismic surface waves: Propagation properties determined from Doppler sounding observation and normal-modes modeling,” Geophys. J. Int. 158, 10671077.
http://dx.doi.org/10.1111/j.1365-246X.2004.02377.x
3.
Artru, J. , Lognonné, P. , and Blanc, E. (2001). “ Normal modes modelling of post-seismic ionospheric oscillations,” Geophys. Res. Lett. 28(4), 697700, doi:10.1029/2000GL000085.
http://dx.doi.org/10.1029/2000GL000085
4.
Astafyeva, E. , and Heki, K. (2009). “ Dependence of waveform of nearfield co-seismic ionospheric disturbances on focal mechanisms,” Earth Planets Space 61, 939943.
http://dx.doi.org/10.1186/BF03353206
5.
Astafyeva, E. , Heki, K. , Kiryushkin, V. , Afraimovich, E. , and Shalimov, S. (2009). “ Two mode long distance propagation of coseismic ionosphere disturbances,” J. Geophys. Res. 114, A10307, doi:10.1029/2008JA013853.
http://dx.doi.org/10.1029/2008JA013853
6.
Bass, H. , and Chambers, J. (2001). “ Absorption of sound in the Martian atmosphere,” J. Acoust. Soc. Am. 109, 30693071.
http://dx.doi.org/10.1121/1.1365424
7.
Ben-Menahem, A. (1975). “ Source parameters of the Siberian explosion of June 30, 1908, from analysis and synthesis of seismic signal at four stations,” Phys. Earth Planet. Int. 11, 135.
http://dx.doi.org/10.1016/0031-9201(75)90072-2
8.
Borovička, J. , Spurny, P. , Brown, P. , Wiegert, P. , Kalenda, P. , Clark, D. , and Shrbeny, L. (2013). “ The trajectory, structure and origin of the Chelyabinsk asteroidal impactor,” Nature 503(7475), 235237.
http://dx.doi.org/10.1038/nature12671
9.
Bourdillon, A. , Occhipinti, G. , Molinie, J.-P. , and Rannou, V. (2014). “ HF radar detection of infrasonic waves generated in the ionosphere by the 28 March 2005 Sumatra earthquake,” J. Atmos. Sol.-Terr. Phys. 109, 7579.
http://dx.doi.org/10.1016/j.jastp.2014.01.008
10.
Brissaud, Q. , Martin, R. , Garcia, R. F. , and Komatitsch, D. (2016). “ Finite-difference numerical modelling of gravitoacoustic wave propagation in a windy and attenuating atmosphere,” Geophys. J. Int. 206, 308327.
http://dx.doi.org/10.1093/gji/ggw121
11.
Calais, E. , and Minster, J. B. (1995). “ GPS detection of ionospheric perturbations following the January 17, 1994, Northridge earthquake,” Geophys. Res. Lett. 22, 10451048, doi:10.1029/95GL00168.
http://dx.doi.org/10.1029/95GL00168
12.
Chum, J. , Hruska, F. , Zednik, J. , and Lastovicka, J. (2012). “ Ionospheric disturbances (infrasound waves) over the Czech Republic excited by the 2011 Tohoku earthquake,” J. Geophys. Res. 117, A08319, doi:10.1029/2012JA017767.
http://dx.doi.org/10.1029/2012JA017767
13.
Connes, P. , Noxon, J. F. , Traub, W. A. , and Carleton, N. P. (1979). “ O2(1D) emission in the day and night airglow of Venus,” Astrophys. J. 233, L29L32.
http://dx.doi.org/10.1086/183070
14.
Davis, K. , and Baker, D. M. (1965). “ Ionospheric effects observed around the time of the Alaskan earthquake of March 28, 1964,” J. Geophys. Res. 70, 12511253, doi:10.1029/JZ070i009p02251.
http://dx.doi.org/10.1029/JZ070i009p02251
15.
Donn, W. L. , and Ewing, M. (1962a). “ Atmospheric waves from nuclear explosions,” J. Geophys. Res. 67, 18551866, doi:10.1029/JZ067i005p01855.
http://dx.doi.org/10.1029/JZ067i005p01855
16.
Donn, W. L. , and Ewing, M. (1962b). “ Atmospheric waves from nuclear explosion. 2. The Soviet test of October 30, 1961,” J. Atmos. Sci. 19, 264273.
http://dx.doi.org/10.1175/1520-0469(1962)019<0264:AWFNEI>2.0.CO;2
17.
Ducic, V. , Artru, J. , and Lognonné, P. (2003). “ Ionospheric remote sensing of the Denali Earthquake Rayleigh surface waves,” Geophys. Res. Lett. 30(18), 1951, doi:10.1029/2003GL017812.
http://dx.doi.org/10.1029/2003GL017812
18.
Dziewonski, A. M. , and Anderson, D. L. (1981). “ Preliminary reference Earth model,” Phys. Earth Planet. Inter. 25, 297356.
http://dx.doi.org/10.1016/0031-9201(81)90046-7
19.
Edwards, W. N. (2008). “ Meteor generated infrasound: Theory and observation,” in Infrasound Monitoring for Atmospheric Studies, edited by A. Le Pichon ( Springer-Verlag, New York), Chap. 12, pp. 355408.
20.
Edwards, W. N. , Eaton, D. W. , and Brown, P. G. (2008). “ Seismic observations of meteors: Coupling theory and observations,” Rev. Geophys. 46, RG4007, doi:10.1029/2007RG000253.
http://dx.doi.org/10.1029/2007RG000253
21.
Forget, F. , Hourdin, F. , Fournier, R. , Hourdin, C. , Talagrand, O. , Collins, M. , Lewis, S. R. , Read, P. L. , and Huot, J.-P. (1999). “ Improved general circulation models of the Martian atmosphere from the surface to above 80 km,” J. Geophys. Res. 104, 2415524176, doi:10.1029/1999JE001025.
http://dx.doi.org/10.1029/1999JE001025
22.
Francis, S. H. (1973). “ Acoustic-gravity modes and large-scale traveling ionospheric disturbances of a realistic, dissipative atmosphere,” J. Geophys. Res. 78, 22782301, doi:10.1029/JA078i013p02278.
http://dx.doi.org/10.1029/JA078i013p02278
23.
Fukao, Y. , Nishida, K. , Suda, N. , Nawa, K. , and Kobayashi, N. (2002). “ A theory of the Earth's background free oscillations,” J. Geophys. Res. 107, 11-111-11, doi:10.1029/2001JB000153.
http://dx.doi.org/10.1029/2001JB000153
24.
Garcia, R. , Crespon, F. , Ducic, V. , and Lognonné, P. (2005). “ Three-dimensional ionospheric tomography of post-seismic perturbations produced by the Denali earthquake from GPS data,” Geophys. J. Int. 163, 10491064, doi:10.1111/j.1365-246X.2005.02775.x.
http://dx.doi.org/10.1111/j.1365-246X.2005.02775.x
25.
Garcia, R. , Lognonné, P. , and Bonnin, X. (2005). “ Detecting atmospheric perturbations produced by Venus quakes,” Geophys. Res. Lett. 32, L16205, doi:10.1029/2005GL023558.
http://dx.doi.org/10.1029/2005GL023558
26.
Garcia, R. F. , Bruinsma, S. , Lognonné, P. , Doornbos, E. , and Cachoux, F. (2013). “ GOCE: The first seismometer in orbit around the Earth,” Geophys. Res. Lett. 40, 10151020, doi:10.1002/grl.50205.
http://dx.doi.org/10.1002/grl.50205
27.
Gérard, J. C. , Soret, L. , Migliorini, A. , and Piccioni, G. (2013). “ Oxygen nightglow emissions of Venus: Vertical distribution and collisional quenching,” Icarus 223, 602608.
http://dx.doi.org/10.1016/j.icarus.2012.11.019
28.
Harkrider, D. G. (1964). “ Theoretical and observed acoustic-gravity waves from explosive sources in the atmosphere,” J. Geophys. Res. 69, 52955321, doi:10.1029/JZ069i024p05295.
http://dx.doi.org/10.1029/JZ069i024p05295
29.
Hunt, J. N. , Palmaer, R. , and Penney, Sir W. (1960). “ Atmospheric waves caused by large explosions,” Phil. Trans. R. Soc. London A 43, 1734.
http://dx.doi.org/10.1098/rsta.1960.0007
30.
Kanamori, H. , and Mori, J. (1992). “ Harmonic excitation of mantle Rayleigh waves by the 1991 eruption of mount Pinatubo, Philippines,” Geophys. Res. Lett. 19, 721724, doi:10.1029/92GL00258.
http://dx.doi.org/10.1029/92GL00258
31.
Kanamori, H. , Mori, J. , and Harkrider, D. G. (1994). “ Excitation of atmospheric oscillations by volcanic eruptions,” J. Geophys. Res. 22, 947961.
32.
Kelley, M. C. , Livingston, R. , and McCready, M. (1985). “ Large amplitude thermospheric oscillations induced by an earthquake,” Geophys. Res. Lett. 12, 577580, doi:10.1029/GL012i009p00577.
http://dx.doi.org/10.1029/GL012i009p00577
33.
Kobayashi, N. (2007). “ A new method to calculate normal modes,” Geophys. J. Int. 168, 315331.
http://dx.doi.org/10.1111/j.1365-246X.2006.03220.x
34.
Kobayashi, N. , and Nishida, K. (1998a). “ Continuous excitation of planetary free oscillations by atmospheric disturbances,” Nature 395, 357360.
http://dx.doi.org/10.1038/26427
35.
Kobayashi, N. , and Nishida, K. (1998b). “ Atmospheric excitation of planetary free oscillations,” J. Phys. Condens. Matter 10, 1155711560.
http://dx.doi.org/10.1088/0953-8984/10/49/044
36.
Krasnopolsky, V. A. (2011). “ Excitation of the oxygen nightglow on the terrestrial planets,” Planet. Space Sci. 59, 754766.
http://dx.doi.org/10.1016/j.pss.2011.02.015
37.
Leonard, R. S. , and Barnes, R. A. , Jr. (1965). “ Observation of ionospheric disturbances following the Alaska earthquake,” J. Geophys. Res. 70, 12501253, doi:10.1029/JZ070i005p01250.
http://dx.doi.org/10.1029/JZ070i005p01250
38.
Lognonné, P. (1991). “ Normal modes and seismograms of an anelastic rotating Earth,” J. Geophys. Res. 96, 2030920319, doi:10.1029/91JB00420.
http://dx.doi.org/10.1029/91JB00420
39.
Lognonné, P. (2005). “ Planetary seismology,” Ann. Rev. Earth Planet. Sci. 33, 571604.
http://dx.doi.org/10.1146/annurev.earth.33.092203.122604
40.
Lognonné P. (2009). “ Seismic waves from atmospheric sources and Atmospheric-Ionospheric signatures of seismic waves,” in Infrasound Monitoring for Atmospheric Studies, edited by A. Le Pichon ( Springer-Verlag, New York), Chap. 10, pp. 281304.
41.
Lognonné, P. , Artru, J. , Garcia, R. , Crespon, F. , Ducic, V. , Jeansou, E. , Occhipinti, G. , Helbert, J. , Moreaux, G. , and Godet, P.-E. (2006). “ Ground based GPS tomography of ionospheric post-seismic signal,” Planet. Space Sci. 54, 528540.
http://dx.doi.org/10.1016/j.pss.2005.10.021
42.
Lognonné, P. , Clévédé, C. , and Kanamori, H. (1998). “ Normal mode summation of seismograms and barograms in an spherical Earth with realistic atmosphere,” Geophys. J. Int. 135, 388406.
http://dx.doi.org/10.1046/j.1365-246X.1998.00665.x
43.
Lognonné P. , and Clévédé, E. (2002). “ Normal modes of the Earth and Planets,” Handbook on Earthquake and Engineering Seismology, International Geophysics series, 81A, 125–147, IASPEI Centennial Publications, edtied by W. H. K. Lee, H. Kanamori, P. C. Jennings, and C. Kisslinger ( Academic Press, San Diego), Chap. 10.
44.
Lognonné P. , and Johnson, C. (2007). “ Planetary seismology,” in Treatrise in Geophysics, Planets and Moons, edited by G. Shubert ( Elsevier, New York), Vol. 10, Chap. 4, pp. 69122.
45.
Lognonné, P. , and Kawamura, T. (2015). “ Impact seismology on terrestrial and giant planets,” in Extraterrestrial Seismology, edited by V. Tong and R. Garcia ( Cambridge University Press, London), Chap. 20, pp. 250263.
46.
Lognonné, P , Mosser, B. , and Dahlen, F. A. (1994). “ Excitation of the Jovian seismic waves by the Shoemaker-Levy 9 cometary impact,” Icarus 110, 186195.
http://dx.doi.org/10.1006/icar.1994.1115
47.
Makela, J. J. , Lognonné, P. , Hébert, H. , Gehrels, T. , Rolland, L. , Allgeyer, S. , Kherani, A. , Occhipinti, G. , Astafyeva, E. , Coisson, P. , Loevenbruck, L. , Clévédé, E. , Kelley, M. C. , and Lamouroux, J. (2011). “ Imaging and modeling the ionospheric airglow response over Hawaii to the tsunami generated by the Tohoku Earthquake of 11 March 2011,” Geophys. Res. Lett. 38, L00G02, doi:10.1029/2011GL047860.
http://dx.doi.org/10.1029/2011GL047860
48.
Maruyama, T. , and Shinagawa, H. (2014). “ Infrasonic sounds excited by seismic waves of the 2011 Tohoku-oki earthquake as visualized in ionograms,” J. Geophys. Res. Space Phys. 119, 40944108, doi:10.1002/2013JA019707.
http://dx.doi.org/10.1002/2013JA019707
49.
Maruyama, T. , Tsugawa, T. , Kato, H. , Ishii, M. , and Nishioka, M. (2012). “ Rayleigh wave signature in ionograms induced by strong earthquakes,” J. Geophys. Res. 117, A08306, doi:10.1029/2012JA017952.
http://dx.doi.org/10.1029/2012JA017952
50.
Master, G. , Barmine, M. , and Kientz, S (2014). Mineos user Manual, version 1.0.2, https://geodynamics.org/cig/software/mineos/ (Last viewed 8/21/2016).
51.
Mutschlechner, J. P. , and Whitaker, R. W. (2009). “ Some atmospheric effects on infrasound signal amplitudes,” in Infrasound Monitoring for Atmospheric Studies, edited by A. Le Pichon ( Springer-Verlag, New York), Chap. 14, pp. 475507.
52.
Myers, S. C. , Begnaud, M. L. , Ballard, S. , Pasyanos, M. E. , Phillips, W. S. , Ramirez, A. L. , Antolik, M. S. , Hutchenson, K. D. , Wagner, G. S. , Dwyer, J. J. , Rowe, C. A. , and Russell, D. R. (2010). “ A crust and upper mantle model of Eurasia and North Africa for Pn travel time calculation,” Bull. Seism. Soc. Am. 100(2), 640656.
http://dx.doi.org/10.1785/0120090198
53.
Nawa, K. , Suda, N. , Fukao, Y. , Sato, T. , Aoyama, Y. , and Shibuya, K. (1998). “ Incessant excitation of the Earth's free oscillations,” Earth Planet. Space 50, 38.
http://dx.doi.org/10.1186/BF03352080
54.
Nishida, K. (2013). “ Earth's background free oscillations,” Ann. Rev. Earth Planet. Sci. 41, 719740.
http://dx.doi.org/10.1146/annurev-earth-050212-124020
55.
Nishida, K. (2014). “ Source spectra of seismic hum,” Geophysical J. 199, 416429.
http://dx.doi.org/10.1093/gji/ggu272
56.
Nishida, K. , and Kobayashi, N. (1999). “ Statistical features of Earth's continuous free oscillations,” J. Geophys. Res. 104, 2874128750, doi:10.1029/1999JB900286.
http://dx.doi.org/10.1029/1999JB900286
57.
Nishida, K. , Kobayashi, N. , and Fukao, Y. (2000). “ Resonant oscillations between the solid Earth and the Atmosphere,” Science 287, 22442246.
http://dx.doi.org/10.1126/science.287.5461.2244
58.
Occhipinti, G. (2015). “ The seismology of the planet Mongo: The 2015 ionospheric seismology review,” in Subduction Dynamics: From Mantle to Mega Disasters, edited by G. Morra, D. A. Yuen, S. King, S. M. Lee, and S. Stein ( Wiley, New York), ISBN 978-1-118-88885-8.
59.
Occhipinti, G. , Coisson, P. , Makela, J. J. , Allgeyer, S. , Kherani, A. , Hébert, H. , and Lognonné, P. (2011). “ Three-dimensional numerical modeling of tsunami-related internal gravity waves in the Hawaiian atmosphere,” Earth Planet. Sci. 63, 847851.
60.
Occhipinti, G. , Dorey, P. , Farges, T. , and Lognonné, P. (2010). “ Nostradamus: The radar that wanted to be a seismometer,” Geophys. Res. Lett. 37, L18104, doi:10.1029/2010GL044009.
http://dx.doi.org/10.1029/2010GL044009
61.
Occhipinti, G. , Rolland, L. , Lognonné, P. , and Watada, S. (2013). “ From Sumatra 2004 to Tohoku-Oki 2011: The systematic GPS detection of the ionospheric signature induced by tsunamigenic earthquakes,” J. Geophys. Res. 118, 36263636, doi:10.1002/jgra.50322.
http://dx.doi.org/10.1002/jgra.50322
62.
Okal, E. , and Anderson, D. J. (1978). “ Theoretical models for Mars and their seismic properties,” Icarus 33, 514528.
http://dx.doi.org/10.1016/0019-1035(78)90187-2
63.
Picone, J. , Hedin, A. , Drob, D. , and Aikin, A. (2002). “ NRLMSISE00 empirical model of the atmosphere: Statistical comparisons and scientific issues,” J. Geophys. Res. 107(A12), 1468.
64.
Pitteway, M. L. V. , and Hines, C. O. (1963). “ The viscous damping of atmospheric gravity waves,” Can. J. Phys. 41, 19351948.
http://dx.doi.org/10.1139/p63-194
65.
Press, F. , and Harkrider, D. (1962). “ Propagation of acoustic-gravity waves in the atmosphere,” J. Geophys. Res. 67, 38893908, doi:10.1029/JZ067i010p03889.
http://dx.doi.org/10.1029/JZ067i010p03889
66.
Reddy, C. D. , and Seemala, G. K. (2015). “ Two-mode ionospheric response and Rayleigh wave group velocity distribution reckoned from GPS measurement following Mw 7.8 Nepal earthquake on 25 April 2015,” J. Geophys. Res. Space Phys. 120, 70497059.
http://dx.doi.org/10.1002/2015JA021502
67.
ReVelle, D. O. (1974). “ Acoustic of meteors effects of the atmospheric temperature and wind structure on the sounds produced by meteors,” Ph.D. dissertation, University of Michigan, Ann Arbor, Michigan.
68.
Rhie, J. , and Romanowicz, B. (2004). “ Excitations of the Earth's incessant free oscillation by atmosphere/ocean/solid Earth coupling,” Nature 431, 552556.
http://dx.doi.org/10.1038/nature02942
69.
Rhie, J. , and Romanowicz, B. (2006). “ A study of the relation between ocean storms and the Earth's hum,” Geochem. Geophys. Geosyst. 7(10), CiteID Q10004, doi:10.1029/2006GC001274.
http://dx.doi.org/10.1029/2006GC001274
70.
Rolland, L. M. , Lognonné, P. , Astafyeva, E. , Kherani, E. A. , Kobayashi, N. , Mann, M. , and Munekane, H. (2011a). “ The resonant response of the ionosphere imaged after the 2011 Tohoku-Oki earthquake,” Earth Planet. Sci. 63, 853857.
http://dx.doi.org/10.5047/eps.2011.06.020
71.
Rolland, L. M. , Lognonné, P. , and Munekane, H. (2011b). “ Detection and modeling of Rayleigh waves induced patterns in the ionosphere,” J. Geophys. Res. 116, A05320, doi:10.1029/2010JA016060.
http://dx.doi.org/10.1029/2010JA016060
72.
Smrekar, S. E. , Elkins-Tanton, L. T. , Hensley, S. , Campbell, B. A. , Gilmore, M. S. , Phillips, R. J. , and Zebker, H. A. (2014). “ VERITAS: A mission to study the highest priority Decadal Survey questions for Venus,” American Geophysical Union, Fall Meeting 2014, Abstract P21B-3912.
73.
Stofan, E. R. , Saunders, R. S. , Senske, D. , Noco, K. , Tralli, D. , and Lundgren, P. (1993). “ Venus interior structure mission (VISM): Establishing a seismic network on Venus,” in Workshop on Advanced Technologies for Planetary Instruments, Part 1, 2324 pp., SEE N93-28764 1191, Lunar and Planetary Institute, Houston, TX.
74.
Suda, N. , Nawa, K. , and Fukao, Y. (1998). “ Incessant excitation of the Earth's free oscillations,” Science 279, 20892091.
http://dx.doi.org/10.1126/science.279.5359.2089
75.
Takeuchi, H. , and Saïto, H. (1972). “ Seismic surface waves,” in Methods in Computational Physics, edited by B. A. Bolt ( Academic Press, New York), Vol. 11, pp. 217295.
76.
Tanimoto, T. (1999). “ Excitation of normal modes by atmospheric turbulence: Source of long period seismic noise,” Geophys. J. Int. 136, 395402.
http://dx.doi.org/10.1046/j.1365-246x.1999.00763.x
77.
Tanimoto, T. (2005). “ The oceanic excitation hypothesis for the continuous oscillations of the Earth,” Geophys. J. Int. 160, 276288, doi:10.1111/j.1365-246X.2004.02484.x.
http://dx.doi.org/10.1111/j.1365-246X.2004.02484.x
78.
Tanimoto, T. , and Um, J. (1999). “ Cause of continuous oscillations,” J. Geophys. Res. 104, 2872328739, doi:10.1029/1999JB900252.
http://dx.doi.org/10.1029/1999JB900252
79.
Tanimoto, T. , Um, J. , Nishida, K. , and Kabayashi, N. (1998). “ Earth's continuous oscillations observed on seismically quiet days,” Geophys. Res. Lett. 25(10), 15531556, doi:10.1029/98GL01223.
http://dx.doi.org/10.1029/98GL01223
80.
Tauzin, B. , Debayle, E. , Quantin, C. , and Coltice, N. (2013). “ Seismoacoustic coupling induced by the breakup of the 15 February 2013 Chelyabinsk meteor,” Geophys. Res. Lett. 40, 35223526, doi:10.1002/grl.50683.
http://dx.doi.org/10.1002/grl.50683
81.
Unno, W. , Osaki, Y. , Ando, H. , Saito, H. , and Shibayashi, H. (1989). Non-radial Oscillations of Stars ( Tokyo University Press, Japan).
82.
Venus GRAM model, https://software.nasa.gov/software/MFS-32314-1 (last viewed 8/21/2016).
83.
Watada, S. (1995). “ Part 1: Near-source acoustic coupling between the atmosphere and the solid Earth during volcanic eruptions,” Ph.D. thesis, California Institute of Technology, Pasadena, California.
84.
Watada, S. , and Kanamori, H. (2010). “ Acoustic resonant oscillations between the atmosphere and the solid Earth during the 1991 Mt. Pinatubo eruption,” J. Geophys. Res. 115, B12319, doi:10.1029/2010JB007747.
http://dx.doi.org/10.1029/2010JB007747
85.
Weaver, P. F. , Yuen, P. C. , Prolss, G. W. , and Furumoto, A. S. (1970). “ Acoustic coupling in the ionosphere from seismic waves of the earthquake at Kurile Islands on August 11, 1969,” Nature 226, 12391241.
http://dx.doi.org/10.1038/2261239a0
86.
Webb, S. C. (2007). “ The Earth's ‘Hum’ is driven by ocean waves over the continental shelves,” Nature 445, 754756.
http://dx.doi.org/10.1038/nature05536
87.
Widmer, R. , and Zürn, W. (1992). “ Bichromatic excitation of long-period Rayleigh and air waves by the mount Pinatubo and El Chichon volcanic eruptions,” Geophys. Res. Lett. 19, 765768, doi:10.1029/92GL00685.
http://dx.doi.org/10.1029/92GL00685
88.
Williams, J. P. (2001). “ Acoustic environment of the Martian surface,” J. Geophys. Res. 106(E3), 50335041, doi:10.1029/1999JE001174.
http://dx.doi.org/10.1029/1999JE001174
89.
Woodhouse, J. H. , and Dahlen, F. A. (1978). The effect of a general aspherical perturbation on the free oscillations of the Earth, Geophys. J. R. Astr. Soc. 53, 335354.
90.
Yamamoto, R. (1955). “ The microbarographic oscillations produced by the explosions of hydrogen bombs in the Marshall Islands,” Bull. Am. Meteorol. Soc. 37, 406409.
http://dx.doi.org/10.1002/j.1477-8696.1955.tb05069.x
91.
Yamamoto, R. (1957). “ A dynamical theory of micro-barographic oscillations produced by the explosions of hydrogen bombs,” J. Meteorol. Soc. Japan 35, 3240.
92.
Yuen, P. C. , Weaver, P. F. , Suzuki, R. K. , and Furumoto, A. S. (1969). “ Continuous traveling coupling between seismic waves and the ionosphere evident in May 1968 Japan earthquake data,” J. Geophys. Res. 74, 22562264, doi:10.1029/JA074i009p02256.
http://dx.doi.org/10.1029/JA074i009p02256
93.
Zürn, W. , and Widmer, R. (1996). “ Worldwide observation of bichromatic long-period Rayleigh-waves excited during the June 15, 1991 Eruption of Mt. Pinatubo,” in Fire and Mud, Eruptions of Mount Pinatubo, Philippines, edited by C. Newhall and R. Punongbayan ( University of Washington Press, Washington), pp. 615624.
http://aip.metastore.ingenta.com/content/asa/journal/jasa/140/2/10.1121/1.4960788
Loading
/content/asa/journal/jasa/140/2/10.1121/1.4960788
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/asa/journal/jasa/140/2/10.1121/1.4960788
2016-08-31
2016-12-05

Abstract

Acoustic coupling between solid Earth and atmosphere has been observed since the 1960s, first from ground-based seismic, pressure, and ionospheric sensors and since 20 years with various satellite measurements, including with global positioning system (GPS) satellites. This coupling leads to the excitation of the Rayleigh surface waves by local atmospheric sources such as large natural explosions from volcanoes, meteor atmospheric air-bursts, or artificial explosions. It contributes also in the continuous excitation of Rayleigh waves and associated normal modes by atmospheric winds and pressure fluctuations. The same coupling allows the observation of Rayleigh waves in the thermosphere most of the time through ionospheric monitoring with Doppler sounders or GPS. The authors review briefly in this paper observations made on Earth and describe the general frame of the theory enabling the computation of Rayleigh waves for models of telluric planets with atmosphere. The authors then focus on Mars and Venus and give in both cases the atmospheric properties of the Rayleigh normal modes and associated surface waves compared to Earth. The authors then conclude on the observation perspectives especially for Rayleigh waves excited by atmospheric sources on Mars and for remote ionospheric observations of Rayleigh waves excited by quakes on Venus.

Loading

Full text loading...

/deliver/fulltext/asa/journal/jasa/140/2/1.4960788.html;jsessionid=sQbnALEV5iXyFeke6kCRSGgd.x-aip-live-02?itemId=/content/asa/journal/jasa/140/2/10.1121/1.4960788&mimeType=html&fmt=ahah&containerItemId=content/asa/journal/jasa
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=asadl.org/jasa/140/2/10.1121/1.4960788&pageURL=http://scitation.aip.org/content/asa/journal/jasa/140/2/10.1121/1.4960788'
Right1,Right2,Right3,