Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/asa/journal/jasa/140/3/10.1121/1.4962373
1.
P. A. Johnson, B. Zinszner, and P. N. J. Rasolofosaon, “ Resonance and elastic nonlinear phenomena in rock,” J. Geophys. Res. 101, 1155311564, doi:10.1029/96JB00647 (1996).
http://dx.doi.org/10.1029/96JB00647
2.
J. A. Ten Cate and T. J. Shankland, “ Slow dynamics in the nonlinear elastic response of Berea sandstone,” Geophys. Res. Lett. 23, 30193022, doi:10.1029/96GL02884 (1996).
http://dx.doi.org/10.1029/96GL02884
3.
M. C. Remillieux, R. A. Guyer, C. Payan, and T. J. Ulrich, “ Decoupling nonclassical nonlinear behavior of elastic wave types,” Phys. Rev. Lett. 116, 115501 (2016).
http://dx.doi.org/10.1103/PhysRevLett.116.115501
4.
G. Renaud, M. Talmant, S. Callé, M. Defontaine, and P. Laugier, “ Nonlinear elastodynamics in micro-inhomogeneous solids observed by head-wave based dynamic acoustoelastic testing,” J. Acoust. Soc. Am. 130, 35833589 (2011).
http://dx.doi.org/10.1121/1.3652871
5.
J. Rivière, G. Renaud, R. A. Guyer, and P. A. Johnson, “ Pump and probe waves in dynamic acousto-elasticity: Comprehensive description and comparison with nonlinear elastic theories,” J. Appl. Phys. 114, 054905 (2013).
http://dx.doi.org/10.1063/1.4816395
6.
T. J. Ulrich, A. M. Sutin, T. Claytor, P. Papin, P.-Y. Le Bas, and J. A. TenCate, “ The time reversed elastic nonlinearity diagnostic applied to evaluation of diffusion bonds,” Appl. Phys. Lett. 93, 151914 (2008).
http://dx.doi.org/10.1063/1.2998408
7.
C. Payan, T. J. Ulrich, P. Y. Le Bas, M. Griffa, P. Schuetz, M. C. Remillieux, and T. A. Saleh, “ Probing material nonlinearity at various depths by time reversal mirrors,” Appl. Phys. Lett. 104, 144102 (2014).
http://dx.doi.org/10.1063/1.4871094
8.
G. Renaud, J. Rivière, S. Haupert, and P. Laugier, “ Anisotropy of dynamic acoustoelasticity in limestone, influence of conditioning, and comparison with nonlinear resonance spectroscopy,” J. Acoust. Soc. Am. 133, 37063718 (2013).
http://dx.doi.org/10.1121/1.4802909
9.
M. C. Remillieux, T. J. Ulrich, C. Payan, J. Rivière, C. R. Lake, and P.-Y. Le Bas, “ Resonant ultrasound spectroscopy for materials with high damping and samples of arbitrary geometry,” J. Geophys. Res. 120, 48984916, doi:10.1002/2015JB011932 (2015).
http://dx.doi.org/10.1002/2015JB011932
10.
J. A. TenCate, “ Slow dynamics of Earth materials: An experimental overview,” Pure Appl. Geophys. 168, 22112219 (2011).
http://dx.doi.org/10.1007/s00024-011-0268-4
11.
C. Payan, V. Garnier, J. Moysan, and P. A. Johnson, “ Determination of third order constants in a complex solid by coda wave interferometry,” Appl. Phys. Lett. 94, 011904 (2009).
http://dx.doi.org/10.1063/1.3064129
12.
V. Tournat, V. Zaitsev, V. Gusev, V. Nazarov, P. Béquin, and B. Castagnède, “ Probing weak forced in granular media through nonlinear dynamic dilatancy: Clapping contacts and polarization anisotropy,” Phys. Rev. Lett. 92, 085502 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.085502
13.
M. Lott, C. Payan, V. Garnier, Q. A. Vu, J. N. Eiras, M. C. Remillieux, P.-Y. Le Bas, and T. J. UlrichThree-dimensional treatment of nonequilibrium dynamics and higher order elasticity,” Appl. Phys. Lett. 108, 141907 (2016).
http://dx.doi.org/10.1063/1.4945680
http://aip.metastore.ingenta.com/content/asa/journal/jasa/140/3/10.1121/1.4962373
Loading
/content/asa/journal/jasa/140/3/10.1121/1.4962373
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/asa/journal/jasa/140/3/10.1121/1.4962373
2016-09-07
2016-09-25

Abstract

In this letter, the equivalence between local and global measures of nonclassical nonlinear elasticity is established in a slender resonant bar. Nonlinear effects are first measured globally using nonlinear resonance ultrasound spectroscopy (NRUS), which monitors the relative shift of the resonance frequency as a function of the maximum dynamic strain in the sample. Subsequently, nonlinear effects are measured locally at various positions along the sample using dynamic acousto elasticity testing (DAET). After correcting analytically the DAET data for three-dimensional strain effects and integrating numerically these corrected data along the length of the sample, the NRUS global measures are retrieved almost exactly.

Loading

Full text loading...

/deliver/fulltext/asa/journal/jasa/140/3/1.4962373.html;jsessionid=7oUUFGLLgpzBzEFGk7L8gdOG.x-aip-live-06?itemId=/content/asa/journal/jasa/140/3/10.1121/1.4962373&mimeType=html&fmt=ahah&containerItemId=content/asa/journal/jasa
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=asadl.org/jasa/140/3/10.1121/1.4962373&pageURL=http://scitation.aip.org/content/asa/journal/jasa/140/3/10.1121/1.4962373'
Right1,Right2,Right3,