Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/asa/journal/jasa/140/3/10.1121/1.4962374
1.
Ding, N. , and Simon, J. Z. (2009). “ Neural representations of complex temporal modulations in the human auditory cortex,” J. Neurophysiol. 102(5), 27312743.
http://dx.doi.org/10.1152/jn.00523.2009
2.
Drullman, R. , Festen, J. M. , and Plomp, R. (1994). “ Effect of temporal envelope smearing on speech reception,” J. Acoust. Soc. Am. 95(2), 10531064.
http://dx.doi.org/10.1121/1.408467
3.
Fu, Q. J. , and Shannon, R. V. (1999). “ Phoneme recognition by cochlear implant users as a function of signal-to-noise ratio and nonlinear amplitude mapping,” J. Acoust. Soc. Am. 106(2), L18L23.
http://dx.doi.org/10.1121/1.427031
4.
Füllgrabe, C. , Moore, B. C. J. , Demany, L. , Ewert, S. D. , Sheft, S. , and Lorenzi, C. (2005). “ Modulation masking produced by second-order modulators,” J. Acoust. Soc. Am. 117(4), 21582168.
http://dx.doi.org/10.1121/1.1861892
5.
Hsieh, I. H. , and Saberi, K. (2010). “ Detection of sinusoidal amplitude modulation in logarithmic frequency sweeps across wide regions of the spectrum,” Hear. Res. 262(1-2), 918.
http://dx.doi.org/10.1016/j.heares.2010.02.002
6.
Levitt, H. (1971). “ Transformed up-down methods in psychoacoustics,” J. Acoust. Soc. Am. 49(2), 467477.
http://dx.doi.org/10.1121/1.1912375
7.
Lorenzi, C. , Soares, C. , and Vonner, T. (2001). “ Second-order temporal modulation transfer functions,” J. Acoust. Soc. Am. 110(2), 10301038.
http://dx.doi.org/10.1121/1.1383295
8.
Luo, H. , Wang, Y. , Poeppel, D. , and Simon, J. Z. (2006). “ Concurrent encoding of frequency and amplitude modulation in human auditory cortex: MEG evidence,” J. Neurophysiol. 96(5), 27122723.
http://dx.doi.org/10.1152/jn.01256.2005
9.
Luo, X. , and Fu, Q. J. (2007). “ Frequency modulation detection with simultaneous amplitude modulation by cochlear implant users,” J. Acoust. Soc. Am. 122(2), 10461054.
http://dx.doi.org/10.1121/1.2751258
10.
Malone, B. J. , Beitel, R. E. , Vollmer, M. , Heiser, M. A. , and Schreiner, C. E. (2013). “ Spectral context affects temporal processing in awake auditory cortex,” J. Neurosci. 33(22), 94319450.
http://dx.doi.org/10.1523/JNEUROSCI.3073-12.2013
11.
Moore, B. C. , and Sek, A. (1992). “ Detection of combined frequency and amplitude modulation,” J. Acoust. Soc. Am. 92(6), 31193131.
http://dx.doi.org/10.1121/1.404208
12.
Moore, B. C. , and Sek, A. (1996). “ Detection of frequency modulation at low modulation rates: Evidence for a mechanism based on phase locking,” J. Acoust. Soc. Am. 100(4), 23202331.
http://dx.doi.org/10.1121/1.417941
13.
Moore, B. C. , and Skrodzka, E. (2002). “ Detection of frequency modulation by hearing-impaired listeners: Effects of carrier frequency, modulation rate, and added amplitude modulation,” J. Acoust. Soc. Am. 111(1), 327335.
http://dx.doi.org/10.1121/1.1424871
14.
Nie, K. , Stickney, G. , and Zeng, F. G. (2005). “ Encoding frequency modulation to improve cochlear implant performance in noise,” IEEE Trans. Bio-Med. Eng. 52(1), 6473.
http://dx.doi.org/10.1109/TBME.2004.839799
15.
Ozimek, E. , and Sek, A. (1987). “ Perception of amplitude and frequency modulated signals (mixed modulation),” J. Acoust. Soc. Am. 82(5), 15981603.
http://dx.doi.org/10.1121/1.395149
16.
Pasley, B. N. , David, S. V. , Mesgarani, N. , Flinker, A. , Shamma, S. A. , Crone, N. E. , Knight, R. T. , and Chang, E. F. (2012). “ Reconstructing speech from human auditory cortex,” PLOS Biol. 10(1), e1001251.
http://dx.doi.org/10.1371/journal.pbio.1001251
17.
Shannon, R. V. , Zeng, F. G. , Kamath, V. , Wygonski, J. , and Ekelid, M. (1995). “ Speech recognition with primarily temporal cues,” Science 270(5234), 303304.
http://dx.doi.org/10.1126/science.270.5234.303
18.
Smith, Z. M. , Delgutte, B. , and Oxenham, A. J. (2002). “ Chimaeric sounds reveal dichotomies in auditory perception,” Nature 416(6876), 8790.
http://dx.doi.org/10.1038/416087a
19.
Stickney, G. S. , Zeng, F. G. , Litovsky, R. , and Assmann, P. (2004). “ Cochlear implant speech recognition with speech maskers,” J. Acoust. Soc. Am. 116(2), 10811091.
http://dx.doi.org/10.1121/1.1772399
20.
Zeng, F. G. , Nie, K. , Stickney, G. S. , Kong, Y. Y. , Vongphoe, M. , Bhargave, A. , Wei, C. , and Cao, K. (2005). “Speech recognition with amplitude and frequency modulations,” Proc. Natl. Acad. Sci. U.S.A. 102(7), 22932298.
http://dx.doi.org/10.1073/pnas.0406460102
21.
Zilany, M. S. A. , Bruce, I. C. , and Carney, L. H. (2014). “ Updated parameters and expanded simulation options for a model of the auditory periphery,” J. Acoust. Soc. Am. 135(1), 283286.
http://dx.doi.org/10.1121/1.4837815
22.
Zilany, M. S. A. , Bruce, I. C. , Nelson, P. C. , and Carney, L. H. (2009). “ A phenomenological model of the synapse between the inner hair cell and auditory nerve: Long-term adaptation with power-law dynamics,” J. Acoust. Soc. Am. 126(5), 23902412.
http://dx.doi.org/10.1121/1.3238250
http://aip.metastore.ingenta.com/content/asa/journal/jasa/140/3/10.1121/1.4962374
Loading
/content/asa/journal/jasa/140/3/10.1121/1.4962374
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/asa/journal/jasa/140/3/10.1121/1.4962374
2016-09-09
2016-12-03

Abstract

Human speech consists of concomitant temporal modulations in amplitude and frequency that are crucial for speech perception. In this study, amplitude modulation (AM) detection thresholds were measured for 550 and 5000 Hz carriers with and without concurrent frequency modulation (FM), at AM rates crucial for speech perception. Results indicate that adding 40 Hz FM interferes with AM detection, more so for 5000 Hz carrier and for frequency deviations exceeding the critical bandwidth of the carrier frequency. These findings suggest that future cochlear implant processors, encoding speech fine-structures may consider limiting the FM to narrow bandwidth and to low frequencies.

Loading

Full text loading...

/deliver/fulltext/asa/journal/jasa/140/3/1.4962374.html;jsessionid=qkhXrswj7tHhDxV6JmszJZ9q.x-aip-live-06?itemId=/content/asa/journal/jasa/140/3/10.1121/1.4962374&mimeType=html&fmt=ahah&containerItemId=content/asa/journal/jasa
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=asadl.org/jasa/140/3/10.1121/1.4962374&pageURL=http://scitation.aip.org/content/asa/journal/jasa/140/3/10.1121/1.4962374'
Right1,Right2,Right3,