Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/asa/journal/jasa/140/4/10.1121/1.4964633
1.
T. G. Leighton, The Acoustic Bubble ( Academic, London, 1994), Chaps. 4 and 5, pp. 413524.
2.
V. F. Humphrey, “ Nonlinear propagation in ultrasonic fields: Measurements, modelling and harmonic imaging,” Ultrasonics 38, 267272 (2000).
http://dx.doi.org/10.1016/S0041-624X(99)00122-5
3.
C. M. Schoellhammer, A. Schroeder, R. Maa, G. Y. Lauwers, A. Swiston, M. Zervas, R. Barman, A. M. DiCiccio, W. R. Brugge, D. G. Anderson, D. Blankschtein, R. Langer, and G. Traverso, “ Ultrasound-mediated gastrointestinal drug delivery,” Sci. Transl. Med. 7, 310ra160310ra168 (2015).
http://dx.doi.org/10.1126/scitransLmed.aaa5937
4.
M. A. O'Reilly and K. Hynynen, “ Blood-brain barrier: Real-time feedback-controlled focused ultrasound disruption by using an acoustic emission-based controller,” Radiology 263, 96106 (2012).
http://dx.doi.org/10.1148/radiol.11111417
5.
J. McLaughlan, I. Rivens, T. Leighton, and G. ter Haar, “ A study of bubble activity generated in ex vivo tissue by high intensity focused ultrasound,” Ultrasound Med. Biol. 36, 13271344 (2010).
http://dx.doi.org/10.1016/j.ultrasmedbio.2010.05.011
6.
R. Esche, “ Investigation of acoustic cavitation in liquids,” Acustica 2, AB208218 (1952).
7.
J. Sijl, B. Dollet, M. Overvelde, V. Garbin, T. Rozendal, N. de Jong, D. Lohse, and M. Versluis, “ Subharmonic behavior of phospholipid-coated ultrasound contrast agent microbubbles,” J. Acoust. Soc. Am. 128, 32393252 (2010).
http://dx.doi.org/10.1121/1.3493443
8.
J. T. Tervo, R. Mettin, and W. Lauterborn, “ Bubble cluster dynamics in acoustic cavitation,” Acta Acoust. 92, 178180 (2006).
9.
D. M. Hallow, A. D. Mahajan, T. E. Mccutchen, and M. R. Prausnitz, “ Measurement and correlation of acoustic cavitation with cellular bioeffects,” Ultrasound Med. Biol. 32, 11111122 (2006).
http://dx.doi.org/10.1016/j.ultrasmedbio.2006.03.008
10.
P. R. Birkin, D. G. Offin, C. J. B. Vian, and T. G. Leighton, “ Multiple observation of cavitation cluster dynamics close to an ultrasonic horn tip,” J. Acoust. Soc. Am. 130, 33793388 (2011).
http://dx.doi.org/10.1121/1.3650536
11.
W. Lauterborn and A. Koch, “ Holographic observation of period doubled and chaotic bubble oscillations in acoustic cavitation,” Phys. Rev. A 35, 19741976 (1987).
http://dx.doi.org/10.1103/PhysRevA.35.1974
12.
W. Lauterborn, T. Kurz, R. Mettin, and C. D. Ohl, “ Experimental and theoretical bubble dynamics,” Adv. Chem. Phys. 110, 295380 (1999).
13.
K. Johnston, C. Tapia-Siles, B. Gerold, M. Postema, S. Cochran, A. Cuschieri, and Paul Prentice, “ Periodic shock-emission from acoustically driven cavitation clouds: A source of the subharmonic signal,” Ultrasonics 54, 21512158 (2014).
http://dx.doi.org/10.1016/j.ultras.2014.06.011
14.
Y. Zhou, “ Reduction of bubble cavitation by modifying the diffraction wave from a lithotripter aperture,” J. Endourol. 26, 10751084 (2012).
http://dx.doi.org/10.1089/end.2011.0671
15.
A. Vogel, S. Busch, and U. Parlitz, “ Shock wave emission and cavitation bubble generation by picosecond and nanosecond optical breakdown in water,” J. Acoust. Soc. Am. 100, 148165 (1996).
http://dx.doi.org/10.1121/1.415878
16.
A. Vogel and W. Lauterborn, “ Acoustic transient generation by laser-produced cavitation bubbles near solid boundaries,” J. Acoust. Soc. Am. 84, 719731 (1988).
http://dx.doi.org/10.1121/1.396852
17.
C. C. Church, “ A theoretical study of cavitation generated by an extracorporeal shock wave lithotripter,” J. Acoust. Soc. Am. 86, 215227 (1989).
http://dx.doi.org/10.1121/1.398328
18.
A. Prosperetti and A. Lezzi, “ Bubble dynamics in a compressible liquid. Part 1. First-order theory,” J. Fluid Mech. 168, 457478 (1986).
http://dx.doi.org/10.1017/S0022112086000460
19.
W. Kreider, L. A. Crum, M. R. Bailey, and O. A. Sapozhnikov, “ A reduced-order, single-bubble cavitation model with applications to therapeutic ultrasound,” J. Acoust. Soc. Am. 130, 35113530 (2011).
http://dx.doi.org/10.1121/1.3626158
20.
J. R. Macdonald, “ Some simple isothermal equations of state,” Rev. Mod. Phys. 38, 669679 (1966).
http://dx.doi.org/10.1103/RevModPhys.38.669
21.
M. Minnaert, “ On the musical air-bubbles and the sound of running water,” Philos. Mag. 16, 235248 (1933).
http://dx.doi.org/10.1080/14786443309462277
22.
C. E. Brennen , “Cavitation in medicine,” Interface Focus 5, 2010022 (2015).
http://dx.doi.org/10.1098/rsfs.2015.0022
23.
B. Gerold, S. Kotopoulis, C. McDougall, D. McGloin, M. Postema, and P. Prentice , “Laser-nucleated acoustic cavitation in focused ultrasound,” Rev. Sci. Inst. 82, 044902 (2011).
http://dx.doi.org/10.1063/1.3579499
24.
A. Hurrell, “ Voltage to pressure conversion: Are you getting ‘phased’ by the problem?,” J. Phys.: Conf. Series, Adv. Metrol. Ultrasound Med. 1, 5762 (2004).
25.
N. Kudo , “A simple technique for visualizing ultrasound fields without Schlieren optics,” Ultrasound Med. Biol. 41, 20712081 (2015).
http://dx.doi.org/10.1016/j.ultrasmedbio.2015.03.004
26.
E. A. Brujan, T. Ikeda, and Y. Matsumoto, “ Shock wave emission from a cloud of bubbles,” Soft Matter 8, 57775783 (2012).
http://dx.doi.org/10.1039/c2sm25379h
27.
E. Cramer and W. Lauterborn, “ Acoustic cavitation noise spectra,” Appl. Sci. Res. 38, 209214 (1982).
http://dx.doi.org/10.1007/BF00385950
28.
J. Eisener and R. Mettin, “ Synthetic acoustic spectra of ultrasonic cavitation emissions,” in Fortschritte der Akustik - DAGA 2012 Darmstadt, Deutsche Gesellschaft für Akustik e.V., edited by H. Hanselka ( DEGA, Berlin, 2012), pp. 435436.
29.
C. Scheffczyk, U. Parlitz, T. Kurz, W. Knop, and W. Lauterborn, “ Comparison of bifurcation structures of driven dissipative nonlinear oscillators,” Phys. Rev. A 43, 64956502 (1991).
http://dx.doi.org/10.1103/PhysRevA.43.6495
30.
V. Englisch, U. Parlitz, and W. Lauterborn, “ Comparison of winding-number sequences for symmetric and asymmetric oscillatory systems,” Phys. Rev. E 92, 022907 (2015).
http://dx.doi.org/10.1103/PhysRevE.92.022907
31.
D. Fuster, C. Dopazo, and G. Hauke, “ Liquid compressibility effects during the collapse of a single cavitating bubble,” J. Acoust. Soc. Am. 129, 122131 (2011).
http://dx.doi.org/10.1121/1.3502464
32.
M. Koch, C. Lechner, F. Reutera, K. Köhlera, R. Mettina, and W. Lauterborna, “ Numerical modeling of laser generated cavitation bubbles with the finite volume and volume of fluid method, using OpenFOAM,” Comput. Fluids. 126, 7190 (2016).
http://dx.doi.org/10.1016/j.compfluid.2015.11.008
33.
E. Cramer and W. Lauterborn, “ On the dynamics and acoustic emission of spherical cavitation bubbles in a sound field,” Acustica 49, 226238 (1981).
34.
C. C. Church and E. L. Carstensen, “  ‘Stable’ inertial cavitation,” Ultrasound Med. Biol. 27, 14351437 (2001).
http://dx.doi.org/10.1016/S0301-5629(01)00441-0
35.
W. Lauterborn and E. Cramer, “ Sub-harmonic route to chaos observed in acoustics,” Phys. Rev. Lett. 47, 14451448 (1981).
http://dx.doi.org/10.1103/PhysRevLett.47.1445
36.
E.-A. Brujan and A. Vogel, “ Stress wave emission and cavitation bubble dynamics by nanosecond optical breakdown in a tissue phantom,” J. Fluid Mech. 558, 281308 (2006).
http://dx.doi.org/10.1017/S0022112006000115
37.
See supplementary material at http://dx.doi.org/10.1121/1.4964633 for the image sequence of Figs. 6 and 10.[Supplementary Material]
38.
K. Johansen, J. H. Song, K. Johnston, and P. Prentice, “ Deconvolution of acoustically detected bubble-collapse shock waves,” Ultrasonics 73, 144153.
http://dx.doi.org/10.1016/j.ultras.2016.09.007
http://aip.metastore.ingenta.com/content/asa/journal/jasa/140/4/10.1121/1.4964633
Loading
/content/asa/journal/jasa/140/4/10.1121/1.4964633
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/asa/journal/jasa/140/4/10.1121/1.4964633
2016-10-12
2016-12-05

Abstract

Research on applications of acoustic cavitation is often reported in terms of the features within the spectrum of the emissions gathered during cavitation occurrence. There is, however, limited understanding as to the contribution of specific bubble activity to spectral features, beyond a binary interpretation of stable versus inertial cavitation. In this work, laser-nucleation is used to initiate cavitation within a few millimeters of the tip of a needle hydrophone, calibrated for magnitude and phase from 125 kHz to 20 MHz. The bubble activity, acoustically driven at  = 692 kHz, is resolved with high-speed shadowgraphic imaging at 5 × 106 frames per second. A synthetic spectrum is constructed from component signals based on the hydrophone data, deconvolved within the calibration bandwidth, in the time domain. Cross correlation coefficients between the experimental and synthetic spectra of 0.97 for the /2 and /3 regimes indicate that periodic shock waves and scattered driving field predominantly account for all spectral features, including the sub-harmonics and their over-harmonics, and harmonics of .

Loading

Full text loading...

/deliver/fulltext/asa/journal/jasa/140/4/1.4964633.html;jsessionid=Q8ip_IbvClvXiROFA0U_HemW.x-aip-live-06?itemId=/content/asa/journal/jasa/140/4/10.1121/1.4964633&mimeType=html&fmt=ahah&containerItemId=content/asa/journal/jasa
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=asadl.org/jasa/140/4/10.1121/1.4964633&pageURL=http://scitation.aip.org/content/asa/journal/jasa/140/4/10.1121/1.4964633'
Right1,Right2,Right3,