Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/avs/journal/bip/1/1/10.1116/1.2171996
1.
2.
2H. C. F. Martens, O. Hilt, H. B. Brom, P. W. M. Blom and J. N. Huiberts, Phys. Rev. Lett. 87, 086601 (2001).
http://dx.doi.org/10.1103/PhysRevLett.87.086601
3.
3W. U. Huynh, J. J. Dittmer and A. P. Alivisatos, Science 295, 2425 (2002).
http://dx.doi.org/10.1126/science.1069156
4.
4F. Oosawa, Polyelectrolytes (Dekker, New York, 1971).
5.
5J. Israelachvilli, Intermolecular and Surface Forces (Academic, New York, 1992).
6.
6H. Dautzenberg, W. Jaeger, B. P. J. Ktz, C. Seidel and D. Stscherbind, Polyelectrolytes: Formation, Characterization and Application (Hanser, Munich, 1994).
7.
7S. Förster and M. Schmidt, Adv. Polym. Sci. 120, 51 (1995).
8.
8G. J. Fleer, M. A. CohenStuart, J. M. H. M. Scheutjens, T. Gasgove and B. Vincent, Polymers at Interface (Academic, London, 1995).
9.
9R. R. Netz and D. Andelman, Phys. Rep. 380, 1 (2003).
http://dx.doi.org/10.1016/S0370-1573(03)00118-2
10.
10P. H. Corkhill, A. S. Trevett and B. J. Tighe, Proc. Inst. Mech. Eng., Part A 204, 147 (1990).
11.
11T. T. Hesselink, J. Colloid Interface Sci. 60, 448 (1977).
http://dx.doi.org/10.1016/0021-9797(77)90309-5
12.
12G. J. Fleer and J. Lyklema, J. Colloid Interface Sci. 167, 228 (1974).
13.
13T. Matsumoto and Y. Adachi, J. Colloid Interface Sci. 204, 328 (1998).
http://dx.doi.org/10.1006/jcis.1998.5564
14.
14D. Horn and F. Linkart, edited by Roberts (Blackie Academic & Professional, Glasgow, 1996).
15.
15S. Mann, Nature (London) 332, 119 (1988).
http://dx.doi.org/10.1038/332119a0
16.
16S. Mann, J. Webb and R. J. P. Williams, Biomineralization: Chemical and Biochemical Perspectives (VCH, Weinheim, 1989).
17.
17L. Addadi and S. Weiner, Angew. Chem. 104, 159 (1992).
http://dx.doi.org/10.1002/ange.19921040206
18.
18L. Qi, H. Cölfen and M. Antonietti, Angew. Chem. 112, 617 (2000).
http://dx.doi.org/10.1002/(SICI)1521-3757(20000204)112:3<617::AID-ANGE617>3.0.CO;2-J
19.
19J. Y. Wong, J. Majewsky, M. Seitz, C. K. Park, J. N. Israelachvili and G. S. Smith, Biophys. J. 77, 1445 (1999).
http://dx.doi.org/10.1016/S0006-3495(99)76992-4
20.
20J. Schmitt, T. Grünewald, K. Kjaer, P. Pershan, G. Decher and M. Lösche, Macromolecules 26, 7058 (1993).
http://dx.doi.org/10.1021/ma00077a052
21.
21J. Rädler, I. Koltover, T. Salditt and C. Safinya, Science 275, 810 (1997).
http://dx.doi.org/10.1126/science.275.5301.810
22.
22P. G. Hartley and P. J. Scales, Langmuir 14, 6948 (1998).
http://dx.doi.org/10.1021/la9804841
23.
23F. Caruso, D. N. Furlong, K. Ariga, I Ichinose and T. Kunitake, Langmuir 14, 4559 (1998).
http://dx.doi.org/10.1021/la971288h
24.
24H. Clausen-Schauman and H. E. Gaub, Langmuir 15, 8246 (1999).
http://dx.doi.org/10.1021/la990273b
25.
25Y. Kamiyama and J. Israelachvilli, Macromolecules 25, 5081 (1992).
http://dx.doi.org/10.1021/ma00045a039
26.
26M. A. G. Dahlgren and P. M. Claesson, Prog. Colloid Polym. Sci. 93, 206 (1993).
http://dx.doi.org/10.1007/BFb0118516
27.
27X. Châtelier, T. J. Senden and J. M. Meglio, Europhys. Lett. 41, 303 (1998).
http://dx.doi.org/10.1209/epl/i1998-00147-6
28.
28T. Hugel, M. Grosholz, H. Clausen-Schaumann, A. Pfau, H. E. Gaub and M. Seitz, Macromolecules 34, 1039 (2001).
http://dx.doi.org/10.1021/ma0009404
29.
29M. Seitz, C. Friedsam, W. Jöstl, T. Hugel and H. E. Gaub, Chem Phys Chem 4, 986 (2003).
http://dx.doi.org/10.1002/cphc.200300760
30.
30S. A. Sukhishvili, A. Dhinojwala and S. Granick, Langmuir 15, 8474 (1999).
http://dx.doi.org/10.1021/la990679o
31.
31J. DeRouchey, R. R. Netz and J. O. Raedler, Eur. Phys. J. E 16, 17 (2005).
http://dx.doi.org/10.1140/epje/e2005-00003-4
32.
32B. J. Haupt, T. J. Senden and E. M. Sevick, Langmuir 18, 2174 (2002).
http://dx.doi.org/10.1021/la0112514
33.
33R. R. Netz and J.-F. Joanny, Macromolecules 32, 9013 (1999).
http://dx.doi.org/10.1021/ma990263h
34.
34J.-L. Barrat and J.-F. Joanny, Adv. Chem. Phys. 94, 1 (1996).
http://dx.doi.org/10.1002/9780470141533.ch1
35.
35C. Fleck, R. R. Netz and H. H. Grnberg, Biophys. J. 82, 76 (2002).
http://dx.doi.org/10.1016/S0006-3495(02)75375-7
36.
36A. Shafir, D. Andelman and R. R. Netz, J. Chem. Phys. 119, 2355 (2003).
http://dx.doi.org/10.1063/1.1580798
37.
37R. R. Netz and D. Andelman, Adsorbed and Grafted Polymers at Equilibrium (Marcel Dekker, New York, 2000).
38.
38M. Muthukumar, J. Chem. Phys. 86, 7230 (1987).
http://dx.doi.org/10.1063/1.452763
39.
39J.-F. Joanny, M. Castelnovo and R. R. Netz, J. Phys.: Condens. Matter 12, A1 (2000).
http://dx.doi.org/10.1088/0953-8984/12/8A/301
40.
40C. Y. Kong and M. Muthukumar, J. Chem. Phys. 109, 1522 (1998).
http://dx.doi.org/10.1063/1.476703
41.
41J.-L. Barrat and J.-F. Joanny, Europhys. Lett. 24, 333 (1993).
http://dx.doi.org/10.1209/0295-5075/24/5/003
42.
42A. V. Dobryin, A. Deshkovski and M. Rubinstein, Macromolecules 34, 3421 (2001).
http://dx.doi.org/10.1021/ma0013713
43.
43C. Holm, J. F. Joanny, K. Kremer, R. R. Netz, P. Reineker, C. Seidel, T. A. Vilgis and R. G. Winkler, Adv. Polym. Sci. 166, 67 (2004).
44.
44H. Ahrens, S. Föerster, C. A. Helm, N. A. Kumar, A. Naji, R. R. Netz and C. Seidel, J. Phys. Chem. B 108, 16870 (2004).
http://dx.doi.org/10.1021/jp049553c
45.
45M. Manghi and R. R. Netz, Eur. Phys. J. E 14, 67 (2004).
http://dx.doi.org/10.1140/epje/i2004-10007-3
46.
46H. J. Kreuzer, Chin. J. Phys. (Taipei) 43, 249 (2005).
47.
47Handbook of Micro/Nano Tribology, 1st Ed., edited by B. Bushan (CRC, Boca Raton, FL, 1995).
48.
48K. Kendall, Science 263, 1720 (1994).
http://dx.doi.org/10.1126/science.263.5154.1720
49.
49H. A. Rinia, J. W. Boots, R. A. Kik, M. M. E. Snel, R. A. Demel, J. A. Killian, J. P. Eerden and B. Kruijff, Biochemistry 41, 2814 (2002).
http://dx.doi.org/10.1021/bi011796x
50.
50H. A. Rinia, M. M. E. Snel, J. P. Eerden and B. Kruijff, FEBS Lett. 501, 92 (2001).
http://dx.doi.org/10.1016/S0014-5793(01)02636-9
51.
51M. Seitz, C. K. Park, J. Y. Wong and J. Israelachvili, Langmuir 17, 4616 (2001).
http://dx.doi.org/10.1021/la0103012
52.
52S. Mann and H. E. Gaub, Science 270, 1480 (1995).
http://dx.doi.org/10.1126/science.270.5241.1480
53.
53C. Gliss, H. Clausen-Schaumann, R. Gnther, S. Odenbach, O. Randl and T. M. Bayerl, Biophys. J. 74, 2443 (1998).
http://dx.doi.org/10.1016/S0006-3495(98)77952-4
54.
54F. Oesterhelt, D. Oesterhelt, M. Pfeiffer, A. Engel, H. E. Gaub and D. J. Müller, Science 288, 143 (2000).
http://dx.doi.org/10.1126/science.288.5463.143
55.
55D. J. Müller, M. Kessler, F. esterhelt, C. Müller, D. Oesterhelt and H. E. Gaub, Biophys. J. 83, 36321 (2002).
http://dx.doi.org/10.1016/S0006-3495(02)75358-7
56.
56T. E. Fisher, S. F. Oberhauser, M. Carrion-Vazquez, P. E. Marszalek and J. M. Fernandez, Trends Biochem. Sci. 24, 379 (1999).
http://dx.doi.org/10.1016/S0968-0004(99)01453-X
57.
57J. G. Duguid, V. A. Bloomfield, J. M. Benevides and G. H. Thomas, Biophys. J. 71, 3350 (1996).
http://dx.doi.org/10.1016/S0006-3495(96)79528-0
58.
58S. Sharma, S. Bharadwaj, A. Surolia and S. K. Podder, Biochem. J. 333, 539 (1998).
59.
59A. Homola and A. A. Robertson, J. Colloid Interface Sci. 312, 286 (1976).
http://dx.doi.org/10.1016/0021-9797(76)90307-6
60.
60D. M. LeNeveau, R. P. Rand and V. A. Parsegian, Nature (London) 259, 601 (1976).
http://dx.doi.org/10.1038/259601a0
61.
61D. Tabor and R. H. S. Winterton, Proc. R. Soc. London, Ser. A 312, 435 (1969).
http://dx.doi.org/10.1098/rspa.1969.0169
62.
62J. Israeachvili, J. Colloid Interface Sci. 44, 259 (1973).
http://dx.doi.org/10.1016/0021-9797(73)90218-X
63.
63J. Israelachvili, Acc. Chem. Res. 20, 415 (1987).
http://dx.doi.org/10.1021/ar00143a005
64.
64T. D. Stowe, K. Yasumura, T. W. Kenny, D. Botkin, K. Wago and D. Rugar, Appl. Phys. Lett. 71, 288 (1997).
http://dx.doi.org/10.1063/1.119522
65.
65A. Kishino and T. Yanagida, Nature (London) 334, 74 (1988).
http://dx.doi.org/10.1038/334074a0
66.
66S. B. Smith, L. Finzi and C. Bustamante, Science 258, 1122 (1992).
http://dx.doi.org/10.1126/science.1439819
67.
67J.-F. Allemand, These de doctorat, Ecole Normale Superieure, France 1997.
68.
68T. R. Strick, J.-F. Allemand, D. Bensimon and V. Croquette, Science 271, 1835 (1996).
http://dx.doi.org/10.1126/science.271.5257.1835
69.
69G. Binnig, C. F. Quate and C. Gerber, Phys. Rev. Lett. 56, 930 (1986).
http://dx.doi.org/10.1103/PhysRevLett.56.930
70.
70G. Binnig and H. Rohrer, Rev. Mod. Phys. 59, 615 (1987).
http://dx.doi.org/10.1103/RevModPhys.59.615
71.
71F. Ohnesorge and G. Binnig, Science 260, 1451 (1993).
http://dx.doi.org/10.1126/science.260.5113.1451
72.
72K. D. Jandt, Mater. Sci. Eng., R. 21, 221 (1998).
http://dx.doi.org/10.1016/S0927-796X(97)00012-0
73.
73M. Radmacher, IEEE Eng. Med. Biol. Mag. 16, 47 (1997).
http://dx.doi.org/10.1109/51.582176
74.
74M. Rief, F. Oesterhelt, B. Heymann and H. E. Gaub, Science 275, 1295 (1997).
http://dx.doi.org/10.1126/science.275.5304.1295
75.
75E.-L. Florin, V. T. Moy and H. E. Gaub, Science 264, 415 (1994).
http://dx.doi.org/10.1126/science.8153628
76.
76H. Heinzelmann, E. Meier, H. Rudin and H. H. Güntherodt, Force Microscopy in Scanning Tunneling Microscopy and Related Methods (Kluwer-Academic, Amsterdam, 1990).
77.
77P. K. Hansma et al., Appl. Phys. Lett. 64, 1738 (1994).
http://dx.doi.org/10.1063/1.111795
78.
78H. G. Hansma and J. H. Hoh, Annu. Rev. Biophys. Biomol. Struct. 23, 115 (1994).
http://dx.doi.org/10.1146/annurev.bb.23.060194.000555
79.
79M. B. Viani et al., Rev. Sci. Instrum. 70, 4300 (1999).
http://dx.doi.org/10.1063/1.1150069
80.
80G. U. Lee, L. A. Chris and R. J. Colton, Science 266, 771 (1994).
http://dx.doi.org/10.1126/science.7973628
81.
81A. Noy, D. V. Vezenov and C. M. Lieber, Annu. Rev. Mater. Sci. 27, 381 (1997).
http://dx.doi.org/10.1146/annurev.matsci.27.1.381
82.
82A. Ashkin, K. Schütze, J. M. Dziedzic, U. Euteneuer and M. Schliwa, Nature (London) 348, 346 (1990).
http://dx.doi.org/10.1038/348346a0
83.
83M. P. Sheetz, Laser Tweezers in Cell Biology (Academic, New York, 1997).
84.
84S. M. Block, Nature (London) 360, 493 (1992).
http://dx.doi.org/10.1038/360493a0
85.
85S. Chu, Sci. Am. 71 (1992).
86.
86K. Svoboda and S. M. Block, Annu. Rev. Biophys. Biomol. Struct. 23, 247 (1994).
http://dx.doi.org/10.1146/annurev.bb.23.060194.001335
87.
87R. Alon, D. A. Hammer and T. A. Springer, Nature (London) 374, 539 (1995).
http://dx.doi.org/10.1038/374539a0
88.
88G. Kaplanski, C. Farnarier, O. Tissot, A. Pierres, A.-M. Benoliel, M.-C. Alessi, S. Kaplanski and P. Bongrand, Biophys. J. 64, 1922 (1993).
http://dx.doi.org/10.1016/S0006-3495(93)81563-7
89.
89D. Kwong, D. F. J. Tees and H. L. Goldsmith, Biophys. J. 71, 1115 (1996).
http://dx.doi.org/10.1016/S0006-3495(96)79313-X
90.
90D. F. J. Tees, O. Coenen and H. L. Goldsmith, Biophys. J. 65, 1318 (1993).
http://dx.doi.org/10.1016/S0006-3495(93)81180-9
91.
91D. F. J. Tees and H. L. Goldsmith, Biophys. J. 71, 1102 (1996).
http://dx.doi.org/10.1016/S0006-3495(96)79312-8
92.
92S. P. Tha, J. Shuster and H. L. Goldsmith, Biophys. J. 50, 1117 (1986).
http://dx.doi.org/10.1016/S0006-3495(86)83556-1
93.
93E. Evans, K. Ritchie and R. Merkel, Biophys. J. 68, 2580 (1995).
http://dx.doi.org/10.1016/S0006-3495(95)80441-8
94.
94D. A. Simson, F. Ziemann, M. Strigl and R. Merkel, Biophys. J. 74, 2080 (1998).
http://dx.doi.org/10.1016/S0006-3495(98)77915-9
95.
95N. H. Thomson, M. Fritz, M. Radmacher, C. F. Schmidt and P. K. Hansma, Biophys. J. 70, 2421 (1996).
http://dx.doi.org/10.1016/S0006-3495(96)79812-0
96.
96T. Strunz, K. Oroszlan, R. Shafer and H.-J. Güntherodt, Proc. Natl. Acad. Sci. U.S.A. 96, 11277 (1999).
http://dx.doi.org/10.1073/pnas.96.20.11277
97.
97D. Krüger, H. Fuchs, R. Rousseau, D. Marx and M. Parrinello, Phys. Rev. Lett. 89, 186402 (2002).
http://dx.doi.org/10.1103/PhysRevLett.89.186402
98.
98J. F. Allemand, D. Bensimon, L. Jullien, A. Bensimon and V. Croquette, Biophys. J. 73, 2064 (1997).
http://dx.doi.org/10.1016/S0006-3495(97)78236-5
99.
99A. D. Mehta, M. Rief, J. A. Spudich, D. A. Smith and R. M. Simmons, Science 283, 1689 (1999).
http://dx.doi.org/10.1126/science.283.5408.1689
100.
100A. Janshoff, M. Neitzert, Y. Oberdörfer and H. Fuchs, Angew. Chem. 112, 3346 (2000).
http://dx.doi.org/10.1002/1521-3757(20000915)112:18<3346::AID-ANGE3346>3.0.CO;2-S
101.
101U. Dammer, M. Hegner, D. Anselmetti, P. Wagner, M. Dreier, W. Huber and H.-J. Gntherodt, Biophys. J. 70, 2437 (1996).
http://dx.doi.org/10.1016/S0006-3495(96)79814-4
102.
102W. Dettmann, M. Grandbois, S. Andr, M. Benoit, A. K. Wehle, H. Kaltner, H.-J. Gabius and H. E. Gaub, Arch. Biochem. Biophys. 383, 157 (2000).
http://dx.doi.org/10.1006/abbi.2000.1993
103.
103M. Grandbois, M. Beyer, M. Rief, H. Clausen-Schaumann and H. E. Gaub, Science 283, 1727 (1999).
http://dx.doi.org/10.1126/science.283.5408.1727
104.
104W. F. Heinz and J. H. Hoh, Trends Biotechnol. 17, 143 (1999).
http://dx.doi.org/10.1016/S0167-7799(99)01304-9
105.
105A. Janshoff, M. Neitzert, Y. Oberdörfer and H. Fuchs, Angew. Chem., Int. Ed. Engl. 112, 3346 (2000).
http://dx.doi.org/10.1002/1521-3757(20000915)112:18<3346::AID-ANGE3346>3.0.CO;2-S
106.
106H. Clausen-Schaumann, M. Seitz, R. Krautbauer and H. Gaub, Curr. Opin. Chem. Biol. 4, 524 (2000).
http://dx.doi.org/10.1016/S1367-5931(00)00126-5
107.
107G. U. Lee, D. A. Kidwell and R. J. Colton, Langmuir 10, 354 (1994).
http://dx.doi.org/10.1021/la00014a003
108.
108H. Clausen-Schaumann, M. Rief, C. Tolksdorf and H. E. Gaub, Biophys. J. 78, 1997 (2000).
http://dx.doi.org/10.1016/S0006-3495(00)76747-6
109.
109P. E. Marszalek, A. F. Oberhauser, Y. P. Pang and J. M. Fernandez, Nature (London) 396, 661 (1998).
http://dx.doi.org/10.1038/25322
110.
110M. Rief, M. Gautel, F. Oesterhelt, J. M. Fernandez and H. E. Gaub, Science 276, 1109 (1997).
http://dx.doi.org/10.1126/science.276.5315.1109
111.
111M. S. Kellermayer, S. B. Smith, H. L. Granzier and C. Bustamante, Science 276, 1112 (1997).
http://dx.doi.org/10.1126/science.276.5315.1112
112.
112A. F. Oberhauser, P. E. Marszalek, H. P. Erickson and J. M. Fernandez, Nature (London) 393, 181 (1998).
http://dx.doi.org/10.1038/30270
113.
113M. Rief, M. Gautel, A. Schemmel and H. E. Gaub, Biophys. J. 75, 3008 (1998).
http://dx.doi.org/10.1016/S0006-3495(98)77741-0
114.
114P. E. Marszalek, H. Lu, H. B. Li, M. Carrion-Vazquez, A. F. Oberhauser, K. Schulten and J. M. Fernandez, Nature (London) 402, 100 (1999).
http://dx.doi.org/10.1038/47083
115.
115M. Carrion-Vazquez, A. F. berhauser, S. B. Fowler, P. E. Marszalek, S. E. Broedel, J. Clarke and J. M. Fernandez, Proc. Natl. Acad. Sci. U.S.A. 96, 3694 (1999).
http://dx.doi.org/10.1073/pnas.96.7.3694
116.
116P. Cluzel, A. Lebrun, C. Heller, R. Lavery, J.-L. Viovy, D. Chatenay and F. Caron, Science 271, 792 (1996).
http://dx.doi.org/10.1126/science.271.5250.792
117.
117H. Dietz and M. Rief, Proc. Natl. Acad. Sci. U.S.A. 101, 16192 (2004).
http://dx.doi.org/10.1073/pnas.0404549101
118.
118I. Schwaiger, A. Kardinal, M. Schleicher, A. A. Noegel and M. Rief, Nat. Struct. Biol. 11, 81 (2004).
http://dx.doi.org/10.1038/nsmb705
119.
119D. K. Klimov and D. Thirumalai, Proc. Natl. Acad. Sci. U.S.A. 96, 6166 (1999).
http://dx.doi.org/10.1073/pnas.96.11.6166
120.
120M. Rief, J. Pascual, M. Saraste and H. E. Gaub, J. Mol. Biol. 286, 553 (1999).
http://dx.doi.org/10.1006/jmbi.1998.2466
121.
121R. Krautbauer, H. Clausen-Schaumann and H. E. Gaub, Angew. Chem., Int. Ed. Engl. 39, 3912 (2000).
http://dx.doi.org/10.1002/1521-3773(20001103)39:21<3912::AID-ANIE3912>3.0.CO;2-5
122.
122G. I. Bell, Science 200, 618 (1978).
http://dx.doi.org/10.1126/science.347575
123.
123E. Evans, D. Berk and A. Leung, Biophys. J. 59, 838 (1991).
http://dx.doi.org/10.1016/S0006-3495(91)82296-2
124.
124E. Evans and K. Ritchie, Biophys. J. 72, 1541 (1997).
http://dx.doi.org/10.1016/S0006-3495(97)78802-7
125.
125S. Israilev, S. Stepaniants, M. Balsera, Y. Ono and K. Schulten, Biophys. J. 72, 1568 (1997).
http://dx.doi.org/10.1016/S0006-3495(97)78804-0
126.
126H. Grubmüller, B. Heymann and P. Tavan, Science 271, 997 (1996).
http://dx.doi.org/10.1126/science.271.5251.997
127.
127R. Merkel, P. Nassoy, A. Leung, K. Ritchie and E. Evans, Nature (London) 397, 50 (1999).
http://dx.doi.org/10.1038/16219
128.
128E. Evans and F. Ludwig, J. Phys.: Condens. Matter 12A, 315 (2000).
http://dx.doi.org/10.1088/0953-8984/12/8A/341
129.
129E. Evans, Annu. Rev. Biophys. Biomol. Struct. 30, 105 (2001).
http://dx.doi.org/10.1146/annurev.biophys.30.1.105
130.
130E. Evans, Biophys. Chem. 82, 83 (1999).
http://dx.doi.org/10.1016/S0301-4622(99)00108-8
131.
131E. Evans, Faraday Discuss. 111, 1 (1998).
http://dx.doi.org/10.1039/a809884k
132.
132B. Heymann and H. Grubmüller, Phys. Rev. Lett. 84, 6126 (2000).
http://dx.doi.org/10.1103/PhysRevLett.84.6126
133.
133B. Heymann and H. Grubmüller, Biophys. J. 81, 1295 (2001).
http://dx.doi.org/10.1016/S0006-3495(01)75787-6
134.
134B. Heymann and H. Grubmüller, Chem. Phys. Lett. 303, 1 (1999).
http://dx.doi.org/10.1016/S0009-2614(99)00183-9
135.
135M. Balsera, S Stepaniants, S. Israilev, Y. Oono and K. J. Schulten, Biophys. J. 73, 1281 (1997).
http://dx.doi.org/10.1016/S0006-3495(97)78161-X
136.
136S. Boresch and M. Karplus, J. Mol. Biol. 254, 801 (1995).
http://dx.doi.org/10.1006/jmbi.1995.0656
137.
137J. Shillcock and U. Seifert, Phys. Rev. E 57, 7301 (1998).
http://dx.doi.org/10.1103/PhysRevE.57.7301
138.
138U. Seifert, Phys. Rev. Lett. 84, 2750 (2000).
http://dx.doi.org/10.1103/PhysRevLett.84.2750
139.
139G. Hummer and A. Szabo, Proc. Natl. Acad. Sci. U.S.A. 98, 3658 (2001).
http://dx.doi.org/10.1073/pnas.071034098
140.
140X. Châtelier, T. J. Senden and J. M. Meglio, Europhys. Lett. 41, 303 (1998).
http://dx.doi.org/10.1209/epl/i1998-00147-6
141.
141M. Conti, Y. Bustanji, G. Falini, P. Ferruti, S. Stefoni and B. Samori, ChemPhysChem 2, 610 (2001).
http://dx.doi.org/10.1002/1439-7641(20011015)2:10<610::AID-CPHC610>3.0.CO;2-6
142.
142R. W. Tillmann, M. Radmacher and H. E. Gaub, Appl. Phys. Lett. 60, 3111 (1992).
http://dx.doi.org/10.1063/1.106768
143.
143M. Ludwig, W. Dettmann and H. E. Gaub, Biophys. J. 72, 445 (1997).
http://dx.doi.org/10.1016/S0006-3495(97)78685-5
144.
144S. Manne, J. P. Cleveland, H. E. Gaub, G. D. Stucky and P. K. Hansma, Langmuir 10, 4409 (1994).
http://dx.doi.org/10.1021/la00024a003
145.
145C. Möller, M. Allen, V. Elings, A. Engel and D. Müller, Biophys. J. 77, 1150 (1999).
http://dx.doi.org/10.1016/S0006-3495(99)76966-3
146.
146J. P. Cleveland, S. Manne, D. Bocek and P. K. Hansma, Rev. Sci. Instrum. 64, 403 (1993).
http://dx.doi.org/10.1063/1.1144209
147.
147H.-J. Butt and M. Jaschke, Nanotechnology 6, 1 (1995).
http://dx.doi.org/10.1088/0957-4484/6/1/001
148.
148F. Oesterhelt, M. Rief and H. E. Gaub, New J. Phys. 1, 6.1 (1999).
http://dx.doi.org/10.1088/1367-2630/1/1/006
149.
149D. Y. C. Chan and R. G. Horn, J. Chem. Phys. 83, 5311 (1985).
http://dx.doi.org/10.1063/1.449693
150.
150M. B. Viani, T. E. Schaffer, A. Chand, M. Rief, H. E. Gaub and P. K. Hansma, J. Appl. Phys. 86, 2258 (1999).
http://dx.doi.org/10.1063/1.371039
151.
151A. F. Oberhauser, P. K. Hansma, M. Carrion-Vazquez and J. M. Fernandez, Proc. Natl. Acad. Sci. U.S.A. 98, 468 (2001).
http://dx.doi.org/10.1073/pnas.021321798
152.
152J. V. Macpherson and P. R. Unwin, Anal. Chem. 72, 276 (2000).
http://dx.doi.org/10.1021/ac990921w
153.
153C. E. Jones, J. V. Macpherson and P. R. Unwin, J. Phys. Chem. B 104, 2351 (2000).
http://dx.doi.org/10.1021/jp993532e
154.
154J. V. Macpherson and P. R. Unwin, Anal. Chem. 73, 550 (2001).
http://dx.doi.org/10.1021/ac001072b
155.
155T. Hugel, N. B. Holland, A. Cattani, L. Moroder, M. Seitz and H. E. Gaub, Science 296, 1103 (2002).
http://dx.doi.org/10.1126/science.1069856
156.
156N. B. Holland, T. Hugel, G. Neuert, D. Oesterhelt, L. Moroder, M. Seitz and H. E. Gaub, Macromolecules 36, 2015 (2003).
http://dx.doi.org/10.1021/ma021139s
157.
157A. Serr and R. R. Netz, Europhys. Lett. (in press, 2005).
158.
158B. Haupt, J. Ennis and E. M. Sevick, Langmuir 15, 3886 (1999).
http://dx.doi.org/10.1021/la981112v
159.
159C. Friedsam, A. K. Wehle, F. Khner and H. E. Gaub, J. Phys.: Condens. Matter 15, 1709 (2003).
http://dx.doi.org/10.1088/0953-8984/15/18/305
160.
160S. Löefas, B. Johnsson, A. Edström, S. Hansson, G. Lindquist, R.-H. Müeller-Hillgren and L. Stigh, Biosens. Bioelectron. 10, 813 (1995).
http://dx.doi.org/10.1016/0956-5663(95)99220-F
161.
161J. E. Butler, L. Ni, R. Nessler, K. S. Joshi, M. Suter, B. Rosenberg, J. Chang, W. R. Brown and L. A. Cantarero, J. Immunol. Methods 150, 77 (1992).
http://dx.doi.org/10.1016/0022-1759(92)90066-3
162.
162J.-Y. Shao and R. M. Hochmuth, Biophys. J. 77, 587 (1999).
http://dx.doi.org/10.1016/S0006-3495(99)76915-8
163.
163L. Schmitt, C. Dietrich and R. Tampe, J. Am. Chem. Soc. 116, 8485 (1994).
http://dx.doi.org/10.1021/ja00098a008
164.
164C. M. Kacher, I. K. Weiss, R. J. Stewart, C. F. Schmidt, P. K. Hansma, M. Radmacher and M. Fritz, Eur. Biophys. J. 28, 611 (2000).
http://dx.doi.org/10.1007/s002490050001
165.
165P. Silberzan, L. Leger, D. Ausserre and J. J. Benattar, Langmuir 7, 1647 (1991).
http://dx.doi.org/10.1021/la00056a017
166.
166A. Barrat, P. Silberzan, L. Bourdieu and D. Chatenay, Europhys. Lett. 20, 633 (1992).
http://dx.doi.org/10.1209/0295-5075/20/7/010
167.
167C. T. Tripp and M. L. Hair, Langmuir 8, 1120 (1992).
http://dx.doi.org/10.1021/la00040a018
168.
168D. L. Angst and G. W. Simmons, Langmuir 7, 2236 (1991).
http://dx.doi.org/10.1021/la00058a043
169.
169A. Ulman, Chem. Rev. (Washington, D.C.) 96, 1533 (1996).
170.
170R. G. Nuzzo and D. L. Allara, J. Am. Chem. Soc. 105, 4481 (1983).
http://dx.doi.org/10.1021/ja00351a063
171.
171G. M. Whitesides and P. E. Laibinis, Langmuir 6, 87 (1990).
http://dx.doi.org/10.1021/la00091a013
172.
172L. H. Dubois and R. G. Nuzzo, Annu. Rev. Phys. Chem. 43, 437 (1992).
http://dx.doi.org/10.1146/annurev.pc.43.100192.002253
173.
173C. Friedsam, A. Campo Bcares, U. Jonas, H. E. Gaub and M. Seitz, ChemPhysChem 5, 388 (2004).
http://dx.doi.org/10.1002/cphc.200300797
174.
174C. Friedsam, A. Campo Bcares, U. Jonas, M. Seitz and H. E. Gaub, New J. Phys. 6, 9 (2004).
http://dx.doi.org/10.1088/1367-2630/6/1/009
175.
175R. Schweiss, P. B. Welzel, C. Werner and W. Knoll, Langmuir 17, 4304 (2001).
http://dx.doi.org/10.1021/la001741g
176.
176C. Friedsam, H. E. Gaub, and R. R. Netz, Europhys. Lett. (in press).
177.
177S. S. Shiratori and M. F. Rubner, Macromolecules 33, 4213 (2000).
http://dx.doi.org/10.1021/ma991645q
178.
178F. Bordi et al., Macromolecules 35, 7031 (2002).
http://dx.doi.org/10.1021/ma020116a
179.
179G. Koper and M. Borkovec, J. Phys. Chem. B 105, 6666 (2001).
http://dx.doi.org/10.1021/jp010320k
180.
180Y. Burak and R. R. Netz, J. Phys. Chem. B 108, 4840 (2004).
http://dx.doi.org/10.1021/jp036367i
181.
181A. F. Xie and S. Granick, Nat. Mater. 1, 129 (2002).
http://dx.doi.org/10.1038/nmat738
182.
182H. J. Kreuzer, R. L. C. Wang and M. Grunze, J. Am. Chem. Soc. 125, 8384 (2003).
http://dx.doi.org/10.1021/ja0350839
183.
183R. R. Netz, J. Phys.: Condens. Matter 15, 239 (2003).
http://dx.doi.org/10.1088/0953-8984/15/1/331
184.
184U. Jonas, A. Campo, C. Krüger, G. Glasser and D. Boos, PNAS 99, 5034 (2002).
http://dx.doi.org/10.1073/pnas.082634799
185.
185P. J. Flory, Statistical Mechanics of Chain Molecules (Hanser, Muenchen, 1988).
186.
186M. Doi and S. F. Edwards, The Theory of Polymer Dynamics (Oxford University Press, Oxford, 1998).
187.
187O. Kratky and G. Porod, Recl. Trav. Chim. Pays-Bas 68, 1106 (1949).
http://dx.doi.org/10.1002/recl.19490681203
188.
188C. Bustamante, J. F. Marko, E. D. Siggia and S. Smith, Science 265, 1599 (1994).
http://dx.doi.org/10.1126/science.8079175
189.
189F. Oesterhelt, M. Rief and H. E. Gaub, New J. Phys. 1, 6.1 (1999).
http://dx.doi.org/10.1088/1367-2630/1/1/006
190.
190J. F. Marko and E. D. Siggia, Macromolecules 28, 8759 (1995).
http://dx.doi.org/10.1021/ma00130a008
191.
191M. D. Wang, H. Yin, R. Landick, J. Gelles and S. M. Block, Biophys. J. 72, 1335 (1997).
http://dx.doi.org/10.1016/S0006-3495(97)78780-0
192.
192D. W. Urry et al., Philos. Trans. R. Soc. London, Ser. B 357, 169 (2002).
http://dx.doi.org/10.1098/rstb.2001.1023
193.
193L. Livadaru, R. R. Netz and H. J. Kreuzer, Macromolecules 36, 3732 (2003).
http://dx.doi.org/10.1021/ma020751g
194.
194A. Lamura, T. W. Burkhardt and G. Gompper, Phys. Rev. E 64, 061801 (2001).
http://dx.doi.org/10.1103/PhysRevE.64.061801
195.
195H. J. Kreuzer and M. Grunze, Europhys. Lett. 55, 640 (2001).
http://dx.doi.org/10.1209/epl/i2001-00464-8
196.
196J. C. L. Hagemann, R. J. Meier, M. Heinemann and R. A. Groot, Macromolecules 30, 5953 (1997).
http://dx.doi.org/10.1021/ma9703721
197.
197F. Bartha, F. Bogar, A. Peeters, C. Alsenoy and V. Doren, Phys. Rev. B 62, 10142 (2000).
http://dx.doi.org/10.1103/PhysRevB.62.10142
198.
198L. Livadaru, R. R. Netz and H. J. Kreuzer, J. Chem. Phys. 118, 1404 (2003).
http://dx.doi.org/10.1063/1.1528913
199.
199T. Hugel, M. Rief, M. Seitz, H. E. Gaub and R. R. Netz, Phys. Rev. Lett. 94, 048301 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.048301
200.
200M. W. Schmidt et al., J. Comput. Chem. 14, 1347 (1993).
http://dx.doi.org/10.1002/jcc.540141112
http://aip.metastore.ingenta.com/content/avs/journal/bip/1/1/10.1116/1.2171996
Loading
/content/avs/journal/bip/1/1/10.1116/1.2171996
Loading

Data & Media loading...

Loading

Full text loading...

true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=avspublications.org/1/1/10.1116/1.2171996&pageURL=http://scitation.aip.org/content/avs/journal/bip/1/1/10.1116/1.2171996'
Right1,Right2,Right3,