Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. S. A. Murphy and A. Nicolaou, Mol. Nutr. Food Res. 57, 1336 (2013).
2. C.-H. Lee, P. Olson, and R. M. Evans, Endocrinology 144, 2201 (2003).
3. F. R. Maxfield and I. Tabas, Nature 438, 612 (2005).
4. J. A. Fernández, B. Ochoa, O. Fresnedo, M. T. Giralt, and R. Rodríguez-Puertas, Anal. Bioanal. Chem. 401, 29 (2011).
5. C. K. Abrass, Am. J. Nephrol. 24, 46 (2004).
6. M. Kawai, F. J. A. de Paula, and C. J. Rosen, J. Intern. Med. 272, 317 (2012).
7. C. R. Santos and A. Schulze, FEBS J. 279, 2610 (2012).
8. G. Paradisi, F. Ianniello, C. Tomei, M. Bracaglia, B. Carducci, M. R. Gualano, G. La Torre, M. Banci, and A. Caruso, Gynecol. Endocrinol.: Off. J. Int. Soc. Gynecol. Endocrinol. 26, 539 (2010).
9. B. Rocha, B. Cillero-Pastor, G. Eijkel, A. L. Bruinen, C. Ruiz-Romero, R. M. A. Heeren, and F. J. Blanco, Proteomics 15, 702 (2015).
10. J. Jensen, J. Hyllner, and P. Björquist, J. Cell. Physiol. 219, 513 (2009).
11. M. R. Wenk, Nat. Rev. Drug Discovery 4, 594 (2005).
12. A. Shevchenko and K. Simons, Nat. Rev. Mol. Cell Biol. 11, 593 (2010).
13. M. L. Kraft and H. A. Klitzing, Biochim. Biophys. Acta 1841, 1108 (2014).
14. S. Chandra, Appl. Surf. Sci. 255, 1273 (2008).
15. J. Clerc, Cell Biol. Int. 21, 619 (1997).
16. M. E. Kurczy, P. D. Piehowski, S. A. Parry, M. Jiang, G. Chen, A. G. Ewing, and N. Winograd, Appl. Surf. Sci. 255, 1298 (2008).
17. J. S. Fletcher, S. Rabbani, A. Henderson, N. P. Lockyer, and J. C. Vickerman, Rapid Commun. Mass Spectrom. 25, 925 (2011).
18. M. A. Robinson and D. G. Castner, Biointerphases 8, 15 (2013).
19. C. Bich, D. Touboul, and A. Brunelle, Int. J. Mass Spectrom. 337, 43 (2013).
20. D. R. Walt and V. I. Agayn, TrAC, Trends Anal. Chem. 13, 425 (1994).
21. P. Skehan, J. Membrain Biol. 24, 87 (1975).
22. H. Puchtler and S. N. Meloan, Histochemistry 82, 201 (1985).
23. D. Studer, W. Graber, A. Al-Amoudi, and P. Eggli, J. Microsc. 203, 285 (2001).
24. D. Studer, H. Hennecke, and M. Müller, Planta 188, 155 (1992).
25. K. Zierold, J. Microsc. 161, 357 (1991).
26. J. Malm, D. Giannaras, M. O. Riehle, N. Gadegaard, and P. Sjövall, Anal. Chem. 81, 7197 (2009).
27. M. K. Passarelli and N. Winograd, Biochim. Biophys. Acta, Mol. Cell Biol. Lipids 1811, 976 (2011).
28. E. S. Berman, S. L. Fortson, K. D. Checchi, L. Wu, J. S. Felton, K. J. Wu, and K. S. Kulp, J. Am. Soc. Mass Spectrom. 19, 1230 (2008).
29. S. Vaidyanathan, Surf. Interface Anal. 45, 255 (2013).
30. C. R. Anderton, B. Vaezian, K. Lou, J. F. Frisz, and M. L. Kraft, Surf. Interface Anal. 44, 322 (2012).
31. Y. Nagata, I. Ishizaki, M. Waki, Y. Ide, M. A. Hossen, K. Ohnishi, N. Sanada, and M. Setou, Surf. Interface Anal. 46, 185 (2014).
32. J. Brison, M. A. Robinson, D. S. Benoit, S. Muramoto, P. S. Stayton, and D. G. Castner, Anal. Chem. 85, 10869 (2013).
33. K. R. Tucker, Z. Li, S. S. Rubakhin, and J. V. Sweedler, J. Am. Soc. Mass Spectrom. 23, 1931 (2012).
34. D. Belazi, S. Solé-Domènech, B. Johansson, M. Schalling, and P. Sjövall, Histochem. Cell Biol. 132, 105 (2009).
35. D. L. White, S. B. Andrews, J. W. Faller, and R. J. Barrnett, Biochim. Biophys. Acta, Biomembr. 436, 577 (1976).
36. D. J. Graham and D. G. Castner, Biointerphases 7, 1 (2012).
37. B. J. Tyler, G. Rayal, and D. G. Castner, Biomaterials 28, 2412 (2007).
38. S. Wold, K. Esbensen, and P. Geladi, Chemom. Intell. Lab. Syst. 2, 37 (1987).
39. J. E. Jackson, J. Qual. Technol. 12, 201 (1980).
40. L. I. Smith, A Tutorial on Principal Components Analysis (2002), available at
41. A. Wittig, M. Wiemann, M. Fartmann, C. Kriegeskotte, H. F. Arlinghaus, K. Zierold, and W. Sauerwein, Microsc. Res. Tech. 66, 248 (2005).
42. L. Reimer, Elektronenmikroskopische Untersuchungs- und Präparationsmethoden ( Springer, Berlin, Heidelberg, 1967).
43. I. Lanekoff, M. E. Kurczy, K. L. Adams, J. Malm, R. Karlsson, P. Sjövall, and A. G. Ewing, Surf. Interface Anal. 43, 257 (2011).
44. A. M. Piwowar, S. Keskin, M. O. Delgado, K. Shen, J. J. Hue, I. Lanekoff, A. G. Ewing, and N. Winograd, Surf. Interface Anal. 45, 302 (2013).
45. J. F. J. Todd, Pure Appl. Chem. 63, 1541 (1991).
46. D. J. Graham, “ NESAC/BIO toolbox: Spectragui,”, last accessed 27 October 2014.
47. T. Leefmann, C. Heim, A. Kryvenda, S. Siljeström, P. Sjövall, and V. Thiel, Org. Geochem. 57, 23 (2013).
48. P. Malmberg, K. Börner, Y. Chen, P. Friberg, B. Hagenhoff, J.-E. Månsson, and H. Nygren, Biochim. Biophys. Acta 1771, 185 (2007).
49. P. Malmberg, H. Nygren, K. Richter, Y. Chen, F. Dangardt, P. Friberg, and Y. Magnusson, Microsc. Res. Tech. 70, 828 (2007).
50. M. Jerigova, C. Biro, J. Kirchnerova, A. Chorvatova, D. Chorvat, D. Lorenc, and D. Velic, Mol. Imaging Biol. 13, 1067 (2011).
51. Y. Magnusson, P. Friberg, P. Malmberg, and Y. Chen, Appl. Surf. Sci. 254, 6580 (2008).
52. P. Sjövall, B. Johansson, and J. Lausmaa, Appl. Surf. Sci. 252, 6966 (2006).
53. D. S. Mantus, B. D. Ratner, B. A. Carlson, and J. F. Moulder, Anal. Chem. 65, 1431 (1993).
54. S. Muramoto, D. J. Graham, M. S. Wagner, T. G. Lee, D. W. Moon, and D. G. Castner, J. Phys. Chem. C, Nanomater. Interfaces 115, 24247 (2011).
55. J. S. Apte, G. Collier, R. A. Latour, L. J. Gamble, and D. G. Castner, Langmuir 26, 3423 (2010).
56. S. G. Ostrowski, C. Szakal, J. Kozole, T. P. Roddy, J. Xu, A. G. Ewing, and N. Winograd, Anal. Chem. 77, 6190 (2005).
57.See supplementary material at for Figs. 1 and 2 that representative mass spectra in positive and negative ion mode from several preparations and Fig. 4 for peak area data of these two exemplary peaks.[Supplementary Material]
58. M. S. Wagner and D. G. Castner, Langmuir 17, 4649 (2001).
59. M. Saleem and H.-J. Galla, Biochim. Biophys. Acta Biomembr. 1798, 730 (2010).
60. J.-B. Lhoest, E. Detrait, P. van den Bosch de Aguilar, and P. Bertrand, J. Biomed. Mater. Res. 41, 95 (1998).<95::AID-JBM12>3.0.CO;2-G
61. M. S. Wagner, D. J. Graham, B. D. Ratner, and D. G. Castner, Surf. Sci. 570, 78 (2004).

Data & Media loading...


In ToF-SIMS analysis, the experimental outcome from cell experiments is to a great extent influenced by the sample preparation routine. In order to better judge this critical influence in the case of lipid analysis, a detailed comparison of different sample preparation routines is performed—aiming at an optimized preparation routine for systematic lipid imaging of cell cultures. For this purpose, human mesenchymal stem cells were analyzed: (a) as chemically fixed, (b) freeze-dried, and (c) frozen-hydrated. For chemical fixation, different fixatives, i.e., glutaraldehyde, paraformaldehyde, and a mixture of both, were tested with different postfixative handling procedures like storage in phosphate buffered saline, water or critical point drying. Furthermore, secondary lipid fixation via osmium tetroxide was taken into account and the effect of an ascending alcohol series with and without this secondary lipid fixation was evaluated. Concerning freeze-drying, three different postprocessing possibilities were examined. One can be considered as a pure cryofixation technique while the other two routes were based on chemical fixation. Cryofixation methods known from literature, i.e., freeze-fracturing and simple frozen-hydrated preparation, were also evaluated to complete the comparison of sample preparation techniques. Subsequent data evaluation of SIMS spectra in both, positive and negative, ion mode was performed via principal component analysis by use of peak sets representative for lipids. For freeze-fracturing, these experiments revealed poor reproducibility making this preparation route unsuitable for systematic investigations and statistic data evaluation. Freeze-drying after cryofixation showed improved reproducibility and well preserved lipid contents while the other freeze-drying procedures showed drawbacks in one of these criteria. In comparison, chemical fixation techniques via glutar- and/or paraformaldehyde proved most suitable in terms of reproducibility and preserved lipid contents, while alcohol and osmium treatment led to the extraction of lipids and are therefore not recommended.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd