Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/avs/journal/bip/10/2/10.1116/1.4919020
1.
1. Y. Assouline-Dayan, C. Chang, A. Greenspan, Y. Shoenfeld, and M. E. Gershwin, Semin. Arthritis Rheum. 32, 94 (2002).
http://dx.doi.org/10.1053/sarh.2002.33724b
2.
2. B. N. Stulberg, A. W. Davis, T. W. Bauer, M. Levine, and K. Easley, Clin. Orthop. Relat. Res. 268, 140 (1991).
3.
3. D. S. Ruch, J. Sekiya, W. Dickson Schaefer, L. A. Koman, T. L. Pope, and G. G. Poehling, Orthopedics 24, 339 (2001).
4.
4. R. A. Magnussen, F. Guilak, and T. P. Vail, J. Bone Jt. Surg. Am. 87, 1272 (2005).
http://dx.doi.org/10.2106/JBJS.D.01936
5.
5. T. D. Brown and G. L. Hild, J. Biomech. Eng. 105, 171 (1983).
http://dx.doi.org/10.1115/1.3138402
6.
6. R. A. Magnussen, F. Guilak, and T. P. Vail, J. Orthop. Res. 23, 576 (2005).
http://dx.doi.org/10.1016/j.orthres.2004.12.006
7.
7. L. C. Jones and D. S. Hungerford, Curr. Opin. Rheumatol. 16, 443 (2004).
http://dx.doi.org/10.1097/01.moo.0000127829.34643.fd
8.
8. M. A. Mont and D. S. Hungerford, J. Bone Jt. Surg. Am. 77, 459 (1995).
9.
9. S. P. Scully, R. K. Aaron, and J. R. Urbaniak, J. Bone Jt. Surg. Am. 80, 1270 (1998).
10.
10. B. N. Stulberg, T. W. Bauer, and G. H. Belhobek, Clin. Orthop. Relat. Res. 261, 186 (1990).
11.
11. J. R. Urbaniak and E. J. Harvey, J. Am. Acad. Orthop. Surg. 6, 44 (1998).
12.
12. M. Stolz et al., Nat. Nanotechnol. 4, 186 (2009).
http://dx.doi.org/10.1038/nnano.2008.410
13.
13. S. S. Lee, C. T. Duong, S. H. Park, Y. Cho, and S. Park, Proc. Inst. Mech. Eng. H 227, 129 (2013).
http://dx.doi.org/10.1177/0954411912462815
14.
14. C. T. Duong, J. S. Nam, E. M. Seo, B. P. Patro, J. D. Chang, S. Park, and S. S. Lee, Proc. Inst. Mech. Eng. H 224, 541 (2010).
http://dx.doi.org/10.1243/09544119JEIM709
15.
15. G. D. Jay, J. R. Torres, M. L. Warman, M. C. Laderer, and K. S. Breuer, Proc. Natl. Acad. Sci. U. S. A. 104, 6194 (2007).
http://dx.doi.org/10.1073/pnas.0608558104
16.
16. S. H. Kim, A. Opdahl, C. Marmo, and G. A. Somorjai, Biomaterials 23, 1657 (2002).
http://dx.doi.org/10.1016/S0142-9612(01)00292-7
17.
17. E. Tanaka, T. Iwabe, D. A. Dalla-Bona, N. Kawai, T. van Eijden, M. Tanaka, S. Kitagawa, T. Takata, and K. Tanne, J. Orofacial Pain 19, 331 (2005).
18.
18. A. C. Moore and D. L. Burris, Osteoarthritis Cartilage/OARS, Osteoarthritis Res. Soc. 23, 161 (2015).
http://dx.doi.org/10.1016/j.joca.2014.09.021
19.
19. J. M. Coles, L. Zhang, J. J. Blum, M. L. Warman, G. D. Jay, F. Guilak, and S. Zauscher, Arthritis Rheum 62, 1666 (2010).
http://dx.doi.org/10.1002/art.27436
20.
20. R. E. Outerbridge, Clin. Orthop. Relat. Res. 389, 5 (2001).
http://dx.doi.org/10.1097/00003086-200108000-00002
21.
21. Y. H. Liu, D. F. Evans, Q. Song, and D. W. Grainger, Langmuir 12, 1235 (1996).
http://dx.doi.org/10.1021/la950504o
22.
22. S. Park, K. D. Costa, and G. A. Ateshian, J. Biomech. 37, 1679 (2004).
http://dx.doi.org/10.1016/j.jbiomech.2004.02.017
23.
23. E. Tocha, H. Schonherr, and G. J. Vancso, Langmuir 22, 2340 (2006).
http://dx.doi.org/10.1021/la052969c
24.
24. R. J. Cannara, M. Eglin, and R. W. Carpick, Rev. Sci. Instrum. 77, 053701 (2006).
http://dx.doi.org/10.1063/1.2198768
25.
25. M. Varenberg, I. Etsion, and G. Halperin, Rev. Sci. Instrum. 74, 3362 (2003).
http://dx.doi.org/10.1063/1.1584082
26.
26. H. B. Wang and M. L. Gee, Ultramicroscopy 136, 193 (2014).
http://dx.doi.org/10.1016/j.ultramic.2013.10.012
27.
27. A. M. Smith, C. E. Chapman, M. Deslandes, J. S. Langlais, and M. P. Thibodeau, Exp. Brain Res. 144, 211 (2002).
http://dx.doi.org/10.1007/s00221-002-1015-y
28.
28. W. R. Chang, Appl. Ergon. 32, 173 (2001).
http://dx.doi.org/10.1016/S0003-6870(00)00054-5
29.
29. D. M. Elliott, J. Fisher, and D. T. Clark, Wear 217, 288 (1998).
http://dx.doi.org/10.1016/S0043-1648(98)00148-3
30.
30. H. Jiang, R. Browning, J. Fincher, A. Gasbarro, S. Jones, and H. J. Sue, Appl. Surf. Sci. 254, 4494 (2008).
http://dx.doi.org/10.1016/j.apsusc.2008.01.067
31.
31. F. Obata, D. Konishi, K. Yamamoto, N. Hashimoto, and M. Aoishi, J. Jpn. Soc. Tribol. 47, 384 (2002).
32.
32. B. Bhushan and T. Kasai, Nanotechnology 15, 923 (2004).
http://dx.doi.org/10.1088/0957-4484/15/8/009
33.
33. P. L. Menezes, Kishore, and S. V. Kailas, Sadhana–Acad. Proc. Eng. Sci. 33, 181 (2008).
34.
34. P. L. Menezes, Kishore, and S. V. Kailas, Wear 265, 1655 (2008).
http://dx.doi.org/10.1016/j.wear.2008.04.003
35.
35. P. L. Menezes, Kishore, and S. V. Kailas, J. Mater. Process. Technol. 208, 372 (2008).
http://dx.doi.org/10.1016/j.jmatprotec.2008.01.003
36.
36. J. Jurvelin, I. Kiviranta, A. M. Saamanen, M. Tammi, and H. J. Helminen, J Orthop. Res. 7, 352 (1989).
http://dx.doi.org/10.1002/jor.1100070307
37.
37. D. A. Narmoneva, H. S. Cheung, J. Y. Wang, D. S. Howell, and L. A. Setton, J. Orthop. Res. 20, 83 (2002).
http://dx.doi.org/10.1016/S0736-0266(01)00076-6
38.
38. M. Palmoski, E. Perricone, and K. D. Brandt, Arthritis Rheum. 22, 508 (1979).
http://dx.doi.org/10.1002/art.1780220511
39.
39. A. M. Saamanen, M. Tammi, J. Jurvelin, I. Kiviranta, and H. J. Helminen, J. Orthop. Res. 8, 863 (1990).
http://dx.doi.org/10.1002/jor.1100080612
40.
40. R. Krishnan, M. Kopacz, and G. A. Ateshian, J. Orthop. Res. 22, 565 (2004).
http://dx.doi.org/10.1016/j.orthres.2003.07.002
41.
41. C. M. Novince et al., J. Orthop. Res. 31, 183 (2013).
http://dx.doi.org/10.1002/jor.22207
42.
42. M. Caligaris, C. E. Canal, C. S. Ahmad, T. R. Gardner, and G. A. Ateshian, Osteoarthritis Cartilage/OARS, Osteoarthritis Res. Soc. 17, 1327 (2009).
http://dx.doi.org/10.1016/j.joca.2009.03.020
43.
43. G. D. Jay et al., Arthritis Rheum 56, 3662 (2007).
http://dx.doi.org/10.1002/art.22974
44.
44. S. M. Chan, C. P. Neu, G. Duraine, K. Komvopoulos, and A. H. Reddi, Osteoarthritis Cartilage/OARS, Osteoarthritis Res. Soc. 18, 956 (2010).
http://dx.doi.org/10.1016/j.joca.2010.03.012
45.
45. D. P. Chang, F. Guilak, G. D. Jay, and S. Zauscher, J. Biomech. 47, 659 (2014).
http://dx.doi.org/10.1016/j.jbiomech.2013.11.048
46.
46. S. E. Majd, R. Kuijer, A. Kowitsch, T. Groth, T. A. Schmidt, and P. K. Sharma, Langmuir 30, 14566 (2014).
http://dx.doi.org/10.1021/la504345c
47.
47. J. Desrochers, M. W. Amrein, and J. R. Matyas, J. Mech. Behav. Biomed. Mater. 25, 11 (2013).
http://dx.doi.org/10.1016/j.jmbbm.2013.03.019
http://aip.metastore.ingenta.com/content/avs/journal/bip/10/2/10.1116/1.4919020
Loading
/content/avs/journal/bip/10/2/10.1116/1.4919020
Loading

Data & Media loading...

Abstract

The present study evaluated the tribological properties of the articular cartilage surface of the human femoral head with postcollapse stage avascular necrosis (AVN) using atomic force microscopy. The cartilage surface in the postcollapse stage AVN of the femoral head was reported to resemble those of disuse conditions, which suggests that the damage could be reversible and offers the possibilities of success of head-sparing surgeries. By comparing the tribological properties of articular cartilage in AVN with that of osteoarthritis, the authors intended to understand the cartilage degeneration mechanism and reversibility of AVN. Human femoral heads with AVN were explanted from the hip replacement surgery of four patients (60–83 years old). Nine cylindrical cartilage samples (diameter, 5 mm and height, 0.5 mm) were sectioned from the weight-bearing areas of the femoral head with AVN, and the cartilage surface was classified according to the Outerbridge Classification System (AVN0, normal; AVN1, softening and swelling; and AVN2, partial thickness defect and fissuring). Tribological properties including surface roughness and frictional coefficients and histochemistry including Safranin O and lubricin staining were compared among the three groups. The mean surface roughness Rq values of AVN cartilage increased significantly with increasing Outerbridge stages: Rq = 137 ± 26 nm in AVN0, Rq = 274 ± 49 nm in AVN1, and Rq = 452 ± 77 nm in AVN2. Significant differences in Rq were observed among different Outerbridge stages in all cases ( < 0.0001). The frictional coefficients (μ) also increased with increasing Outerbridge stages. The frictional coefficient values were μ = 0.115 ± 0.034 in AVN0, μ = 0.143 ± 0.025 in AVN1, and μ = 0.171 ± 0.039 in AVN2. Similarly to the statistical analysis of surface roughness, significant statistical differences were detected between different Outerbridge stages in all cases ( < 0.05). Both surface roughness and frictional coefficient of cartilage, which were linearly correlated, increased with increasing Outerbridge stages in postcollapse AVN. The underlying mechanism of these results can be related to proteoglycan loss within the articular cartilage that is also observed in osteoarthritis. With regard to the tribological properties, the cartilage degeneration mechanism in AVN was similar to that of osteoarthritis without reversibility.

Loading

Full text loading...

/deliver/fulltext/avs/journal/bip/10/2/1.4919020.html;jsessionid=5dZctcCqxAF6hd7oC2qyu7Hb.x-aip-live-06?itemId=/content/avs/journal/bip/10/2/10.1116/1.4919020&mimeType=html&fmt=ahah&containerItemId=content/avs/journal/bip
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=avspublications.org/10/2/10.1116/1.4919020&pageURL=http://scitation.aip.org/content/avs/journal/bip/10/2/10.1116/1.4919020'
Right1,Right2,Right3,