Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/avs/journal/bip/10/2/10.1116/1.4919561
1.
1. G. Skjakbraek, H. Grasdalen, and B. Larsen, Carbohydr. Res. 154, 239 (1986).
http://dx.doi.org/10.1016/S0008-6215(00)90036-3
2.
2. W. R. Gombotz and S. F. Wee, Adv. Drug Delivery Rev. 31, 267 (1998).
http://dx.doi.org/10.1016/S0169-409X(97)00124-5
3.
3. A. Haug and B. Larsen, Acta Chem. Scand. 16, 1908 (1962).
http://dx.doi.org/10.3891/acta.chem.scand.16-1908
4.
4. A. Haug, B. Larsen, and O. Smidsrod, Acta Chem. Scand. 21, 691 (1967).
http://dx.doi.org/10.3891/acta.chem.scand.21-0691
5.
5. L. Li, Y. Fang, R. Vreeker, and I. Appelqvist, Biomacromolecules 8, 464 (2007).
http://dx.doi.org/10.1021/bm060550a
6.
6. O. Smidsrød and G. Skja˚k-Br˦k, Trends Biotechnol. 8, 71 (1990).
http://dx.doi.org/10.1016/0167-7799(90)90139-O
7.
7. X. Ying, G. Cheng, G. Liu, R. Qu, Y. Wang, and L. Zhang, J. Appl. Polym. Sci. 117, 2331 (2010).
http://dx.doi.org/10.1002/app.32061
8.
8. Y. Dong, W. Dong, Y. Cao, Z. Han, and Z. Ding, Catal. Today 175, 346 (2011).
http://dx.doi.org/10.1016/j.cattod.2011.03.035
9.
9. M. Kawashita, N. Matsui, Z. Li, and T. Miyazaki, J. Mater. Sci. – Mater. Med. 21, 1837 (2010).
http://dx.doi.org/10.1007/s10856-010-4050-4
10.
10. D. R. Fravel, J. J. Marois, R. D. Lumsden, and W. J. Connick, Phytopathology 75, 774 (1985).
http://dx.doi.org/10.1094/Phyto-75-774
11.
11. Y. Zhang, W. Wei, P. Lv, L. Wang, and G. Ma, Eur. J. Pharm. Biopharm. 77, 11 (2011).
http://dx.doi.org/10.1016/j.ejpb.2010.09.016
12.
12. F. Nan, J. Wu, F. Qi, Y. Liu, T. Ngai, and G. Ma, Colloids Surf., A 456, 246 (2014).
http://dx.doi.org/10.1016/j.colsurfa.2014.05.017
13.
13. Y. T. Liao, C. H. Liu, J. Yu, and K. C. W. Wu, Int. J. Nanomed. 9, 2767 (2014).
http://dx.doi.org/10.2147/IJN.S60171
14.
14. Y. T. Liao, K. C. W. Wu, and J. Yu, J. Biomed. Mater. Res. Part B 102, 293 (2014).
http://dx.doi.org/10.1002/jbm.b.33007
15.
15. A. Joshi, R. Keerthiprasad, R. D. Jayant, and R. Srivastava, Carbohydr. Polym. 81, 790 (2010).
http://dx.doi.org/10.1016/j.carbpol.2010.03.050
16.
16. A. Joshi, S. Solanki, R. Chaudhari, D. Bahadur, M. Aslam, and R. Srivastava, Acta Biomater. 7, 3955 (2011).
http://dx.doi.org/10.1016/j.actbio.2011.06.053
17.
17. Y. Kakizawa, R. Nishio, T. Hirano, Y. Koshi, M. Nukiwa, M. Koiwa, J. Michizoe, and N. Ida, J. Controlled Release 142, 8 (2010).
http://dx.doi.org/10.1016/j.jconrel.2009.09.024
18.
18. Z. Liu, T. Lammers, J. Ehling, S. Fokong, J. Bornemann, F. Kiessling, and J. Gaetjens, Biomaterials 32, 6155 (2011).
http://dx.doi.org/10.1016/j.biomaterials.2011.05.019
19.
19. I. Rajzer, J. Mater. Sci. 49, 5799 (2014).
http://dx.doi.org/10.1007/s10853-014-8311-3
20.
20. R. D. Chaudhari, A. B. Joshi, and R. Srivastava, Sens. Actuators, B 173, 882 (2012).
http://dx.doi.org/10.1016/j.snb.2012.08.001
21.
21. T. Coradin and J. Livage, C.R. Chim. 6, 147 (2003).
http://dx.doi.org/10.1016/S1631-0748(03)00006-7
22.
22. G. Garrait, E. Beyssac, and M. Subirade, J. Microencapsulation 31, 363 (2014).
http://dx.doi.org/10.3109/02652048.2013.858792
23.
23. Y. Luo, Y. Ling, W. Guo, J. Pang, W. Liu, Y. Fang, X. Wen, K. Wei, and X. Gao, J. Controlled Release 147, 278 (2010).
http://dx.doi.org/10.1016/j.jconrel.2010.07.108
24.
24. Y. T. Huang, M. Imura, Y. Nemoto, C. H. Cheng, and Y. Yamauchi, Sci. Technol. Adv. Mater. 12, 045005 (2011).
http://dx.doi.org/10.1088/1468-6996/12/4/045005
25.
25. E. C. Kolos and A. J. Ruys, J. Mater. Sci. – Mater. Med. 25, 1801 (2014).
http://dx.doi.org/10.1007/s10856-014-5212-6
26.
26. K. Kandori, T. Kuroda, and M. Wakamura, Colloids Surf., B 87, 472 (2011).
http://dx.doi.org/10.1016/j.colsurfb.2011.06.010
27.
27. V. Uskokovic and D. P. Uskokovic, J. Biomed. Mater. Res. Part B 96B, 152 (2011).
http://dx.doi.org/10.1002/jbm.b.31746
28.
28. R. Tavakoli-darestani, A. Manafi-rasi, and A. Kamrani-rad, Mol. Biol. Rep. 41, 423 (2014).
http://dx.doi.org/10.1007/s11033-013-2876-9
29.
29. J. S. Lee, S. D. Baek, J. Venkatesan, I. Bhatnagar, H. K. Chang, H. T. Kim, and S.-K. Kim, Int. J. Biol. Macromol. 67, 360 (2014).
http://dx.doi.org/10.1016/j.ijbiomac.2014.03.053
30.
30. M. Kester et al., Nano Lett. 8, 4116 (2008).
http://dx.doi.org/10.1021/nl802098g
31.
31. Y. T. Huang, Y. Yamauchi, C.-W. Lai, and W. J. Chen, J. Hazard. Mater. 277, 20 (2014).
http://dx.doi.org/10.1016/j.jhazmat.2013.10.054
32.
32. J. Hanus, M. Ullrich, J. Dohnal, M. Singh, and F. Stepanek, Langmuir 29, 4381 (2013).
http://dx.doi.org/10.1021/la4000318
33.
33. K. C. W. Wu, Y. H. Yang, Y. H. Liang, H. Y. Chen, E. Sung, Y. Yamauchi, and F. H. Lin, Curr. Nanosci. 7, 926 (2011).
http://dx.doi.org/10.2174/157341311798220763
34.
34. Y. Liu, X. Sun, S. Wang, M. Xie, A. Chen, and R. Long, Mater. Lett. 75, 48 (2012).
http://dx.doi.org/10.1016/j.matlet.2012.01.137
35.
35.See supplementary material at http://dx.doi.org/10.1116/1.4919561 for synthesis of hydroxyapatite nanoparticles used in this research.[Supplementary Material]
36.
36. Y. F. Zhao and J. Ma, Microporous Mesoporous Mater. 87, 110 (2005).
http://dx.doi.org/10.1016/j.micromeso.2005.07.046
37.
37. E. P. Herrero, E. M. M. Del Valle, and M. A. Galan, Chem. Eng. J. 117, 137 (2006).
http://dx.doi.org/10.1016/j.cej.2005.12.022
38.
38. R. Liu and D. Zhao, Chemosphere 91, 594 (2013).
http://dx.doi.org/10.1016/j.chemosphere.2012.12.034
http://aip.metastore.ingenta.com/content/avs/journal/bip/10/2/10.1116/1.4919561
Loading
/content/avs/journal/bip/10/2/10.1116/1.4919561
Loading

Data & Media loading...

Abstract

Inorganic hydroxyapatite nanoparticles (HANPs) and two kinds of organic biomolecules (i.e., fluorescent dye rhodamine 6G and protein lysozyme) were coencapsulated into alginate microspheres through an air dynamical atomization with optimized operation conditions. The synthesized microspheres have several advantages: HANP provides osteoconductivity and mechanical strength, rhodamine 6G (R6G) and lysozyme act as model drugs, and alginate provides excellent biocompatibility and carboxylate functionality. The results of fluorescent microscopic images indicated the successful dual encapsulation of HANPs and lysozyme inside the alginate microspheres. Furthermore, the results of 3- (4,5-cimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay showed that the fabricated alginate microspheres could be uptaken by HepG2 without apparent cytotoxicity. The dual encapsulated alginate microspheres fabricated in this study show great potential in many biomedical applications.

Loading

Full text loading...

/deliver/fulltext/avs/journal/bip/10/2/1.4919561.html;jsessionid=o90iPV0IjakYIk7sO9LfJ9bs.x-aip-live-06?itemId=/content/avs/journal/bip/10/2/10.1116/1.4919561&mimeType=html&fmt=ahah&containerItemId=content/avs/journal/bip
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=avspublications.org/10/2/10.1116/1.4919561&pageURL=http://scitation.aip.org/content/avs/journal/bip/10/2/10.1116/1.4919561'
Right1,Right2,Right3,