Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/avs/journal/bip/10/2/10.1116/1.4922237
1.
1. H. H. Zare, S. Sudhop, F. Schamberger, and G. Franz, Biointerphases 9, 031002 (2014).
http://dx.doi.org/10.1116/1.4876736
2.
2. S. Hamaguchi, AIP Conf. Proc. 1545, 214 (2013).
http://dx.doi.org/10.1063/1.4815857
3.
3. S. H. Yang, D. Hong, J. Lee, E. H. Ko, and I. S. Choi, Small 9, 178 (2013).
http://dx.doi.org/10.1002/smll.201202174
4.
4. M. Laroussi, S. Mohades, and N. Barekzi, Biointerphases 10, 029401 (2015).
http://dx.doi.org/10.1116/1.4905666
5.
5. N. Khosravian, A. Bogaerts, S. Huygh, M. Yusupov, and E. C. Neyts, Biointerphases 10, 029501 (2015).
http://dx.doi.org/10.1116/1.4904339
6.
6. F. Nagano-Takebe, H. Miyakawa, F. Nakazawa, and K. Endo, Biointerphases 9, 029006 (2014).
http://dx.doi.org/10.1116/1.4867415
7.
7. J. M. S. Cabral, J. M. Novais, and J. F. Kennedy, Appl. Microbiol. Biotechnol. 23, 157 (1986).
http://dx.doi.org/10.1007/BF00261906
8.
8. M. Wang, N. J. Castro, J. Li, M. Keidar, and L. G. Zhang, J. Nanosci. Nanotechnol. 12, 7692 (2012).
http://dx.doi.org/10.1166/jnn.2012.6624
9.
9. S. D. Keighley, P. Li, P. Estrela, and P. Migliorato, Biosens. Bioelectron. 23, 1291 (2008).
http://dx.doi.org/10.1016/j.bios.2007.11.012
10.
10. C. Ribaut, K. Reybier, B. Torbiero, J. Launay, A. Valentin, O. Reynes, P.-L. Fabre, and F. Nepveu, IRBM 29, 141 (2008).
http://dx.doi.org/10.1016/j.rbmret.2007.12.009
11.
11. S. K. Vashist, E. M. Schneider, E. Lam, S. Hrapovic, and J. H. T. Luong, Sci. Rep. 4, 4407 (2014).
http://dx.doi.org/10.1038/srep04407
12.
12. M. M. M. Bilek, Appl. Surf. Sci. 310, 3 (2014).
http://dx.doi.org/10.1016/j.apsusc.2014.03.097
13.
13. G. Faccio, M. M. Kämpf, C. Piatti, L. Thöny-Meyer, and M. Richter, Sci. Rep. 4, 5370 (2014).
http://dx.doi.org/10.1038/srep05370
14.
14. F. Godia and C. Sola, Biotechnol. Prog. 11, 479 (1995).
http://dx.doi.org/10.1021/bp00035a001
15.
15. H. Yu, H. Tang, and P. Xu, Sci. Rep. 4, 5397 (2014).
http://dx.doi.org/10.1038/srep05397
16.
16. M. Olejnik, M. Twardowska, W. Zaleszczyk, and S. Mackowski, Acta Phys. Pol., A 122, 357 (2012), available at http://przyrbwn.icm.edu.pl/APP/PDF/122/a122z2p25.pdf.
17.
17. D. K. Roh, R. Patel, S. H. Ahn, D. J. Kim, and J. H. Kim, Nanoscale 3, 4162 (2011).
http://dx.doi.org/10.1039/c1nr10525f
18.
18. M. I. Ruiz, C. I. Sanchez, R. G. Torrres, and D. R. Molina, J. Braz. Chem. Soc. 22, 2337 (2011).
http://dx.doi.org/10.1590/S0103-50532011001200014
19.
19. A. K. Wanekaya, W. Chen, N. V. Myung, and A. Mulchandani, Electroanalysis 18, 533 (2006).
http://dx.doi.org/10.1002/elan.200503449
20.
20. E. M. Goldys and F. Xie, Sensors 8, 886 (2008).
http://dx.doi.org/10.3390/s8020886
21.
21. S. S. Shanmukh, L. Jones, J. Driskell, Y. Zhao, R. Dluhy, and R. A. Tripp, Nano Lett. 6, 2630 (2006).
http://dx.doi.org/10.1021/nl061666f
22.
22. V. Oncescu and D. Erickson, Sci. Rep. 3, 1226 (2013).
http://dx.doi.org/10.1038/srep01226
23.
23. L. Schoonen and J. C. M. Hest, Nanoscale 6, 7124 (2014).
http://dx.doi.org/10.1039/c4nr00915k
24.
24. D. Kim and A. E. Herr, Biomicrofluidics 7, 041501 (2013).
http://dx.doi.org/10.1063/1.4816934
25.
25. J. M. P. Delgado, Heat Mass Transfer 42, 279 (2006).
http://dx.doi.org/10.1007/s00231-005-0019-0
26.
26. H. Qiu, Y. Li, G. Ji, G. Zhou, X. Huang, Y. Qu, and P. Gao, Bioresour. Technol. 100, 3837 (2009).
http://dx.doi.org/10.1016/j.biortech.2009.03.016
27.
27. J. Kim, J. W. Grate, and P. Wang, Chem. Eng. Sci. 61, 1017 (2006).
http://dx.doi.org/10.1016/j.ces.2005.05.067
28.
28. M. Quiros, A. B. Garcia, and M. A. Montes-Moran, Carbon 49, 406 (2011).
http://dx.doi.org/10.1016/j.carbon.2010.09.037
29.
29. F. A. Denis, P. Hanarp, D. S. Sutherland, and Y. F. Dufrêne, Nano. Lett. 2, 1419 (2002).
http://dx.doi.org/10.1021/nl025750g
30.
30. D. M. Temino, W. Hartmeier, and M. B. Ansorge-Schumacher, Enzyme Microb. Technol. 36, 3 (2005).
http://dx.doi.org/10.1016/j.enzmictec.2004.01.013
31.
31. P. Nooeaid, W. Li, J. A. Roether, V. Mouriño, O.-M. Goudouri, D. W. Schubert, and A. R. Boccaccini, Biointerphases 9, 041001 (2014).
http://dx.doi.org/10.1116/1.4897217
32.
32. J. Li, X. Cheng, A. Shashurin, and M. Keidar, Graphene 1, 1 (2012).
http://dx.doi.org/10.4236/graphene.2012.11001
33.
33. A. Kondyurin, I. Levchenko, Z.-J. Han, S. Yick, A. Mai-Prochnow, J. Fang, K. Ostrikov, and M. M. M. Bilek, Carbon 65, 287 (2013).
http://dx.doi.org/10.1016/j.carbon.2013.08.028
34.
34. S. Kumar, I. Levchenko, Q. J. Cheng, J. Shieh, and K. Ostrikov, Appl. Phys. Lett. 100, 053115 (2012).
http://dx.doi.org/10.1063/1.3681782
35.
35. N. Chauhan and J. Narang, Enzyme Microb. Technol. 52, 265 (2013).
http://dx.doi.org/10.1016/j.enzmictec.2013.01.006
36.
36. Z. Song, R. Yuan, Y. Chai, W. Jiang, H. Su, X. Che, and X. Ran, Biosen. Bioelectron. 26, 2776 (2011).
http://dx.doi.org/10.1016/j.bios.2010.10.039
37.
37. G. A. Petkova, K. Záruba, P. Zvátora, and V. Král, Nanoscale Res. Lett. 7, 1 (2012).
http://dx.doi.org/10.1186/1556-276X-7-287
38.
38. K. Ding, L. Liu, Y. Cao, X. Yan, H. Wei, and Z. Guo, Int. J. Hydrogen Energy 39, 7326 (2014).
http://dx.doi.org/10.1016/j.ijhydene.2014.03.026
39.
39. Y. Sun, Nanoscale 2, 1626 (2010).
http://dx.doi.org/10.1039/c0nr00258e
40.
40. Z. M. Davoudi, A. E. Kandjani, A. I. Bhatt, I. L. Kyratzis, A. P. O'Mullane, and V. Bansal, Adv. Funct. Mater. 24, 1047 (2014).
http://dx.doi.org/10.1002/adfm.201302368
41.
41. C. Gunawan, W. Y. Teoh, C. P. Marquis, J. Lifia, and R. Amal, Small 5, 341 (2009).
http://dx.doi.org/10.1002/smll.200801202
42.
42. L. Yu, Y. Zhang, B. Zhang, and J. Liu, Sci. Rep. 4, 4551 (2014).
http://dx.doi.org/10.1038/srep04551
43.
43. A. Baksi, P. L. Xavier, K. Chaudhari, N. Goswami, S. K. Pal, and T. Pradeep, Nanoscale 5, 2009 (2013).
http://dx.doi.org/10.1039/c2nr33180b
44.
44. V. Bhalla and V. Zazubovich, Surf. Sci. 606, 1323 (2012).
http://dx.doi.org/10.1016/j.susc.2012.04.021
45.
45. R. K. B. Devi, H. N. K. Sarma, W. Radhapiyari, and C. Brajakishor, Int. J. Pharm. Sci. Rev. Res. 26, 309 (2014).
46.
46. J. F. Kennedy and J. M. S. Cabral, In Immobilized Cells and Enzymes, edited by J. Woodward ( IRL, Oxford, UK, 1985).
47.
47. L. Betancor, F. López-Gallego, A. Hidalgo, N. Alonso-Morales, G. Dellamora-Ortiz, C. Mateo, R. Fernández-Lafuente, and J. M. Guisán, Enzyme Microb. Technol. 39, 877 (2006).
http://dx.doi.org/10.1016/j.enzmictec.2006.01.014
48.
48. H.-W. Kim, J. C. Knowles, and H.-E. Kim, J. Biomed. Mater. Res. B 74, 686 (2005).
http://dx.doi.org/10.1002/jbm.b.30236
49.
49. H. Lee, S.-H. Ahn, and G. H. Kim, Chem. Mater. 24, 881 (2012).
http://dx.doi.org/10.1021/cm200733s
50.
50. Z. R. Domingues, M. E. Cortes, T. Gomes, H. F. Diniz, C. S. Freitas, J. B. Gomes, A. M. C. Faria, and R. D. Sinisterra, Biomaterials 25, 327 (2004).
http://dx.doi.org/10.1016/S0142-9612(03)00524-6
51.
51. K. Rezwan, Q. Z. Chen, J. J. Blaker, and A. R. Boccaccini, Biomaterials 27, 3413 (2006).
http://dx.doi.org/10.1016/j.biomaterials.2006.01.039
52.
52. M. Taguchi and S. Hamaguchi, J. Appl. Phys. 100, 123305 (2006).
http://dx.doi.org/10.1063/1.2401651
53.
53. T. Ito, K. Karahashi, S.-Y. Kang, and S. Hamaguchi, J. Vac. Sci. Technol. A 31, 031301 (2013).
http://dx.doi.org/10.1116/1.4793426
54.
54. R. D. Robinson, K. Gutsol, A. Rabinovich, and A. Fridman, Plasma Med. 2, 249 (2012).
http://dx.doi.org/10.1615/PlasmaMed.2014011596
55.
55. I. Levchenko, M. Korobov, M. Romanov, and M. Keidar, J. Phys. D 37, 1690 (2004).
http://dx.doi.org/10.1088/0022-3727/37/12/014
56.
56. D. Mariotti and R. M. Sankaran, J. Phys. D 44, 174023 (2011).
http://dx.doi.org/10.1088/0022-3727/44/17/174023
57.
57. D. Z. Pai, K. Ostrikov, S. Kumar, D. A. Lacoste, I. Levchenko, and C. O. Laux, Sci. Rep. 3, 1221 (2013).
http://dx.doi.org/10.1038/srep01221
58.
58. M. Laroussi and X. Lu, Appl. Phys. Lett. 87, 113902 (2005).
http://dx.doi.org/10.1063/1.2045549
59.
59. Z. Xiong, Y. Cao, X. Lu, and T. Du, IEEE Trans. Plasma Sci. 39, 2968 (2011).
http://dx.doi.org/10.1109/TPS.2011.2157533
60.
60. S. Wu, Z. Wang, Q. Huang, X. Lu, and Y. Pan, IEEE Trans. Plasma Sci. 39, 1489 (2011).
http://dx.doi.org/10.1109/TPS.2011.2132152
61.
61. K. Ostrikov et al., IEEE Trans. Plasma Sci. 39, 2796 (2011).
http://dx.doi.org/10.1109/TPS.2011.2159022
62.
62. X. Lu, G. V. Naidis, M. Laroussi, and K. Ostrikov, Phys. Rep. 540, 123 (2014).
http://dx.doi.org/10.1016/j.physrep.2014.02.006
63.
63. S. Yick, I. Levchenko, S. Kumar, Z. J. Han, M. M. A. Yajadda, and K. Ostrikov, IEEE Trans. Plasma Sci. 40, 1094 (2012).
http://dx.doi.org/10.1109/TPS.2012.2185716
64.
64. K. Ostrikov, E. C. Neyts, and M. Meyyappan, Adv. Phys. 62, 113 (2013).
http://dx.doi.org/10.1080/00018732.2013.808047
65.
65. I. Levchenko, O. Volotskova, A. Shashurin, Y. Raitses, K. Ostrikov, and M. Keidar, Carbon 48, 4570 (2010).
http://dx.doi.org/10.1016/j.carbon.2010.07.055
66.
66. O. Volotskova, I. Levchenko, A. Shashurin, Y. Raitses, K. Ostrikov, and M. Keidar, Nanoscale 2, 2281 (2010).
http://dx.doi.org/10.1039/c0nr00416b
67.
67. D. Mariotti, H. Lindstrom, A. C. Bose, and K. Ostrikov, Nanotechnology 19, 495302 (2008).
http://dx.doi.org/10.1088/0957-4484/19/49/495302
68.
68. D. Z. Pai, S. Kumar, I. Levchenko, D. A. Lacoste, C. O. Laux, and K. Ostrikov, IEEE Trans. Plasma Sci. 39, 2814 (2011).
http://dx.doi.org/10.1109/TPS.2011.2160657
69.
69. H. Zhao and Hulya Kirkici, IEEE Trans. Plasma Sci. 40, 2225 (2012).
http://dx.doi.org/10.1109/TPS.2012.2208271
70.
70. J. Li, A. Shashurin, and M. Keidar, IEEE Trans. Plasma Sci. 39, 2366 (2011).
http://dx.doi.org/10.1109/TPS.2011.2160567
71.
71. K. Elersic, M. Picman, N. Hauptman, U. Cvelbar, and M. Mozetic, IEEE Trans. Plasma Sci. 39, 2812 (2011).
http://dx.doi.org/10.1109/TPS.2011.2159029
72.
72. M. Wolter, I. Levchenko, H. Kersten, and K. Ostrikov, Appl. Phys. Lett. 96, 133105 (2010).
http://dx.doi.org/10.1063/1.3374324
73.
73. X. Pei, Z. Wang, Q. Huang, S. Wu, and X. Lu, IEEE Trans. Plasma Sci. 39, 2276 (2011).
http://dx.doi.org/10.1109/TPS.2011.2128890
74.
74. D. Mariotti, V. Švrcek, J. W. J. Hamilton, M. Schmidt, and M. Kondo, Adv. Funct. Mater. 22, 954 (2012).
http://dx.doi.org/10.1002/adfm.201102120
75.
75. D. Mariotti, J. Patel, V. Svrcek, and P. Maguire, Plasma Processes Polym. 9, 1074 (2012).
http://dx.doi.org/10.1002/ppap.201200007
76.
76. S. Askari, I. Levchenko, K. Ostrikov, P. Maguire, and D. Mariotti, Appl. Phys. Lett. 104, 163103 (2014).
http://dx.doi.org/10.1063/1.4872254
77.
77. D. Mariotti and R. M. Sankaran, J. Phys. D: Appl. Phys. 43, 323001 (2010).
http://dx.doi.org/10.1088/0022-3727/43/32/323001
78.
78. J. Fang, I. Levchenko, and K. Ostrikov, IEEE Trans. Plasma Sci. 43, 765 (2015).
http://dx.doi.org/10.1109/TPS.2014.2336260
79.
79. P. Pallavicini, A. Taglietti, G. Dacarro, A. Diaz-Fernandez, M. Galli, and P. Grisoli, J. Colloid Interface Sci. 350, 110 (2010).
http://dx.doi.org/10.1016/j.jcis.2010.06.019
80.
80. J. Fang, I. Levchenko, S. Kumar, D. Seo, and K. Ostrikov, Sci. Technol. Adv. Mater. 15, 055009 (2014).
http://dx.doi.org/10.1088/1468-6996/15/5/055009
81.
81. Z. Rastian, A. A. Khodadadi, F. Vahabzadeh, C. Bortolini, M. Dong, Y. Mortazavi, A. Mogharei, M. V. Naseh, and Z. Guo, Biochem. Eng. J. 90, 16 (2014).
http://dx.doi.org/10.1016/j.bej.2014.05.009
82.
82. I. Levchenko, M. Romanov, and M. Keidar, J. Appl. Phys. 94, 1408 (2003).
http://dx.doi.org/10.1063/1.1590054
83.
83. I. Levchenko, M. Romanov, M. Keidar, and I. I. Beilis, Appl. Phys. Lett. 85, 2202 (2004).
http://dx.doi.org/10.1063/1.1792795
84.
84. I. Levchenko, M. Keidar, S. Xu, H. Kersten, and K. Ostrikov, J. Vac. Sci. Technol. B 31, 050801 (2013).
http://dx.doi.org/10.1116/1.4821635
85.
85. D. Mariotti and K. Ostrikov, J. Phys. D 42, 092002 (2009).
http://dx.doi.org/10.1088/0022-3727/42/9/092002
86.
86. I. Levchenko, K. Ostrikov, D. Mariotti, and V. Švrček, Carbon 47, 2379 (2009).
http://dx.doi.org/10.1016/j.carbon.2009.04.031
87.
87. I. Levchenko, S. Y. Huang, and K. Ostrikov, Nanotechnology 21, 025605 (2010).
http://dx.doi.org/10.1088/0957-4484/21/2/025605
88.
88. Z.-J. Han, I. Levchenko, S. Yick, and K. Ostrikov, Nanoscale 3, 4848 (2011).
http://dx.doi.org/10.1039/c1nr10765h
89.
89. M. Modic, I. Junkar, A. Vesel, and M. Mozetic, Surf. Coat. Technol. 213, 98 (2012).
http://dx.doi.org/10.1016/j.surfcoat.2012.10.026
90.
90. U. Cvelbar et al., Surf. Coat. Technol. 211, 200 (2012).
http://dx.doi.org/10.1016/j.surfcoat.2012.01.017
91.
91. Z. Yue, I. Levchenko, S. Kumar, D. Seo, X. Wang, S. Dou, and K. Ostrikov, Nanoscale 5, 9283 (2013).
http://dx.doi.org/10.1039/c3nr00550j
92.
92. S. Xu, K. N. Ostrikov, Y. Li, E. L. Tsakadze, and I. R. Jones, Phys. Plasmas 8, 2549 (2001).
http://dx.doi.org/10.1063/1.1343887
93.
93. T. Okumura, Phys. Res. Int. 2010, 164249.
http://dx.doi.org/10.1155/2010/164249
94.
94. H.-W. Huang, C.-C. Kao, T.-H. Hsueh, C.-C. Yu, C.-F. Lin, J.-T. Chu, H.-C. Kuo, and S.-C. Wang, Mater. Sci. Eng., B 113, 125 (2004).
http://dx.doi.org/10.1016/S0921-5107(04)00280-6
95.
95. B. J. M. Hausmann, M. Khan, Y. Zhang, T. M. Babinec, K. Martinick, M. McCutcheon, P. R. Hemmer, and M. Loncar, Diamond Relat. Mater. 19, 621 (2010).
http://dx.doi.org/10.1016/j.diamond.2010.01.011
96.
96. L. V. Nang and E.-T. Kim, J. Electrochem. Soc. 159, K93 (2012).
http://dx.doi.org/10.1149/2.082204jes
97.
97. I. Levchenko, K. Ostrikov, K. Diwan, K. Winkler, and D. Mariotti, Appl. Phys. Lett. 93, 183102 (2008).
http://dx.doi.org/10.1063/1.3012572
98.
98. M. Goldberg, R. Langer, X. Jia, and J. Biomater. Sci., Polym. Ed. 18, 241 (2007).
99.
99. X. Zhao et al., Sci. Rep. 3, 2238 (2013).
http://dx.doi.org/10.1038/srep02238
100.
100. J.-M. Oh, D.-H. Park, S.-J. Choi, and J.-H. Choy, Recent Pat. Nanotechnol. 6, 200 (2012).
http://dx.doi.org/10.2174/187221012803531538
101.
101. Y. Chen, X. Zheng, H. Qian, Z. Mao, D. Ding, and X. Jiang, ACS Appl. Mater. Interfaces 2, 3532 (2010).
http://dx.doi.org/10.1021/am100709d
102.
102. R. Lv, S. Gai, Y. Dai, N. Niu, F. He, and P. Yang, ACS Appl. Mater. Interfaces 5, 10806 (2013).
http://dx.doi.org/10.1021/am4041652
103.
103. U. K. Gautam, P. M. F. J. Costa, Y. Bando, X. Fang, L. Li, M. Imura, and D. Golberg, Sci. Technol. Adv. Mater. 11, 054501 (2010).
http://dx.doi.org/10.1088/1468-6996/11/5/054501
104.
104. F.-P. Chang, Y. Hung, J.-H. Chang, C.-H. Lin, and C.-Y. Mou, ACS Appl. Mater. Interfaces 6, 6883 (2014).
http://dx.doi.org/10.1021/am500701c
105.
105. J. Lee, J. Lee, S. Kim, C. Kim, S. Lee, B. Min, Y. Shin, and C. Kim, Bull. Korean Chem. Soc. 32, 1357 (2011).
http://dx.doi.org/10.5012/bkcs.2011.32.4.1357
106.
106. Z. W. Lee, J. Zhou, C.-S. Chen, Y. Zhao, C.-H. Tan, L. Li, P. K. Moore, and L.-W. Deng, PLoS One 6, e21077 (2011).
http://dx.doi.org/10.1371/journal.pone.0021077
107.
107. C. Park, K. Oh, S. C. Lee, and C. Kim, Angew. Chem. Int. Ed. 46, 1455 (2007).
http://dx.doi.org/10.1002/anie.200603404
108.
108. Y. Han, D. Shchukin, P. Fernandes, R.-C. Mutihaca, and H. Möhwald, Soft Matter 6, 4942 (2010).
http://dx.doi.org/10.1039/c0sm00294a
109.
109. K. C. Leung, T. D. Nguyen, F. Stoddart, and J. I. Zink, Chem. Mater. 18, 5919 (2006).
http://dx.doi.org/10.1021/cm061682d
110.
110. T. D. Nguyen, K. Leung, M. Liong, Y. Liu, J. F. Stoddart, and J. I. Zink, Adv. Funct. Mater. 17, 2101 (2007).
http://dx.doi.org/10.1002/adfm.200600751
111.
111. C. Park, H. Kim, S. Kim, and C. Kim, J. Am. Chem. Soc. 131, 16614 (2009).
http://dx.doi.org/10.1021/ja9061085
112.
112. Z. Liu, Q. Xue, C. Ling, Z. Yan, and J. Zheng, Comput. Mater. Sci. 68, 121 (2013).
http://dx.doi.org/10.1016/j.commatsci.2012.09.025
113.
113. S. Saha, K. Leung, T. D. Nguyen, J. F. Stoddart, and J. I. Zink, Adv. Funct. Mater. 17, 685 (2007).
http://dx.doi.org/10.1002/adfm.200600989
114.
114. J. Fang, I. Levchenko, and K. Ostrikov, Sci. Technol. Adv. Mater. 15, 045004 (2014).
http://dx.doi.org/10.1088/1468-6996/15/4/045004
115.
115. G. E. J. Poinern, N. Ali, and D. Fawcett, Materials 4, 487 (2011).
http://dx.doi.org/10.3390/ma4030487
116.
116. J. Fang, I. Aharonovich, I. Levchenko, K. Ostrikov, P. G. Spizzirri, S. Rubanov, and S. Prawer, Cryst. Growth Des. 12, 2917 (2012).
http://dx.doi.org/10.1021/cg300103a
117.
117. J. Fang, I. Levchenko, Z. J. Han, S. Yick, and K. Ostrikov, Nanoscale Res. Lett. 9, 390 (2014).
http://dx.doi.org/10.1186/1556-276X-9-390
118.
118. V. D'Britto, H. Kapse, H. Babrekar, A. A. Prabhune, S. V. Bhoraskar, V. Premnath, and B. L. V. Prasad, Nanoscale 3, 2957 (2011).
http://dx.doi.org/10.1039/c1nr10154d
119.
119. H. Mao, R. Cai, N. Kawazoe, and G. Chen, Nanoscale 6, 1552 (2014).
http://dx.doi.org/10.1039/C3NR05273G
120.
120. X.-R. Li, B. Wang, J.-J. Xu, and H.-Y. Chen, Nanoscale 3, 5026 (2011).
http://dx.doi.org/10.1039/c1nr11025j
121.
121. K. Vasilev et al., Nano Lett. 10, 202 (2010).
http://dx.doi.org/10.1021/nl903274q
122.
122. H. Pandey, V. Parashar, R. Parashar, R. Prakash, P. W. Ramteke, and A. C. Pandey, Nanoscale 3, 4104 (2011).
http://dx.doi.org/10.1039/c1nr10661a
123.
123. S. Liu, A. K. Ng, R. Xu, J. Wei, C. M. Tan, Y. Yang, and Y. Chen, Nanoscale 2, 2744 (2010).
http://dx.doi.org/10.1039/c0nr00441c
124.
124. K. Ostrikov, I. Levchenko, U. Cvelbar, M. Sunkara, and M. Mozetic, Nanoscale 2, 2012 (2010).
http://dx.doi.org/10.1039/c0nr00366b
125.
125. S. Kumar, I. Levchenko, K. Ostrikov, and J. A. McLaughlin, Carbon 50, 325 (2012).
http://dx.doi.org/10.1016/j.carbon.2011.07.060
126.
126. S. Yick, A. Mai-Prochnow, I. Levchenko, J. Fang, M. K. Bull, M. Bradbury, A. B. Murphy, and K. Ostrikov, RSC Adv. 5, 5142 (2015).
http://dx.doi.org/10.1039/C4RA08187K
127.
127. V. Neves, E. Heister, S. Costa, C. Tilmaciu, E. Flahaut, B. Soula, H. M. Coley, J. McFadden, and S. R. P. Silva, Nanotechnology 23, 365102 (2012).
http://dx.doi.org/10.1088/0957-4484/23/36/365102
128.
128. R. J. Chen, S. Bangsaruntip, K. Drouvalakis, N. W. S. Kam, M. Shim, Y. M. Li, W. Kim, P. J. Utz, and H. J. Dai, Proc. Natl. Acad. Sci. U. S. A. 100, 4984 (2003).
http://dx.doi.org/10.1073/pnas.0837064100
129.
129. W. Chen, B. Jin, Y. L. Hu, Y. Lu, and X. H. Xia, Small 8, 1001 (2012).
http://dx.doi.org/10.1002/smll.201102117
130.
130. L. R. Lynd et al., Nat. Biotechnol. 26, 169 (2008).
http://dx.doi.org/10.1038/nbt0208-169
131.
131. J. B. Beilenc and Z. Li, Curr. Opin. Biotechnol. 13, 338 (2002).
http://dx.doi.org/10.1016/S0958-1669(02)00334-8
132.
132. K. Awasthi, D. P. Singh, S. K. Singh, D. Dash, and O. N. Srivastava, Carbon 48, 1693 (2010).
http://dx.doi.org/10.1016/j.carbon.2009.12.009
133.
133. H. J. Henzler and K. Kaiser, Nat. Biotechnol. 16, 1077 (1998).
http://dx.doi.org/10.1038/3538
134.
134. S. Panke and M. G. Wubbolts, Curr. Opin. Biotechnol. 13, 111 (2002).
http://dx.doi.org/10.1016/S0958-1669(02)00302-6
135.
135. P. V. Iyer and L. Ananthanarayan, Proc. Biochem. 43, 1019 (2008).
http://dx.doi.org/10.1016/j.procbio.2008.06.004
136.
136. A. Schmid, J. S. Dordick, B. Hauer, A. Kiener, M. Wubbolts, and B. Witholt, Nature 409, 258 (2001).
http://dx.doi.org/10.1038/35051736
137.
137. M. Grzelakowski, O. Onaca, P. Rigler, M. Kumar, and W. Meier, Small 5, 2545 (2009).
http://dx.doi.org/10.1002/smll.200900603
138.
138. P. Xue, G. Lu, Y. Guo, and Y. Wang, J. Mol. Catal. B: Enzym. 30, 75 (2004).
http://dx.doi.org/10.1016/j.molcatb.2004.03.010
139.
139. A. Kondyurin and M. Bilek, Ion Beam Treatment of Polymers – Application Aspects From Medicine to Space ( Elsevier, Oxford, 2008).
140.
140. A. Kondyurin, O. Polonskyi, N. Nosworthy, J. Matousek, P. Hlidek, H. Biederman, and M. M. M. Bilek, Plasma Processes Polym. 5, 727 (2008).
http://dx.doi.org/10.1002/ppap.200800010
http://aip.metastore.ingenta.com/content/avs/journal/bip/10/2/10.1116/1.4922237
Loading
/content/avs/journal/bip/10/2/10.1116/1.4922237
Loading

Data & Media loading...

Abstract

Energy deficiency, global poverty, chronic hunger, chronic diseases, and environment conservation are among the major problems threatening the whole mankind. Nanostructure-based technologies could be a possible solution. Such techniques are now used for the production of many vitally important products including cultured and fermented food, antibiotics, various medicines, and biofuels. On the other hand, the nanostructure-based technologies still demonstrate low efficiency and controllability, and thus still are not capable to decisively address the global problems. Furthermore, future technologies should ensure lowest possible environmental impact by implementing green production principles. One of the most promising approaches to address these challenges are the sophisticatedly engineered biointerfaces. Here, the authors briefly evaluate the potential of the plasma-based techniques for the fabrication of complex biointerfaces. The authors consider mainly the atmospheric and inductively coupled plasma environments and show several examples of the artificial plasma-created biointerfaces, which can be used for the biotechnological and medical processes, as well as for the drug delivery devices, fluidised bed bioreactors, catalytic reactors, and others. A special attention is paid to the plasma-based treatment and processing of the biointerfaces formed by arrays of carbon nanotubes and graphene flakes.

Loading

Full text loading...

/deliver/fulltext/avs/journal/bip/10/2/1.4922237.html;jsessionid=L7uFFVFGSc38sVdRAW_T0oih.x-aip-live-03?itemId=/content/avs/journal/bip/10/2/10.1116/1.4922237&mimeType=html&fmt=ahah&containerItemId=content/avs/journal/bip
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=avspublications.org/10/2/10.1116/1.4922237&pageURL=http://scitation.aip.org/content/avs/journal/bip/10/2/10.1116/1.4922237'
Right1,Right2,Right3,