Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/avs/journal/bip/10/3/10.1116/1.4922798
1.
1. S. A. Plotkin, Nat. Med. 11, S5 (2005).
http://dx.doi.org/10.1038/nm1209
2.
2. R. Rappuoli and A. Aderem, Nature 473, 463 (2011).
http://dx.doi.org/10.1038/nature10124
3.
3. R. N. Germain, Immunity 33, 441 (2010).
http://dx.doi.org/10.1016/j.immuni.2010.09.014
4.
4. S. A. Rosenberg, J. C. Yang, and N. P. Restifo, Nat. Med. 10, 909 (2004).
http://dx.doi.org/10.1038/nm1100
5.
5. R. H. Vonderheide and K. L. Nathanson, Nat. Med. 19, 1098 (2013).
http://dx.doi.org/10.1038/nm.3317
6.
6.American Cancer Society, Cancer Facts & Figures 2013 (American Cancer Society, Atlanta 2013).
7.
7. K.-J. Malmberg, Cancer Immunol. Immunother. 53, 879 (2004).
8.
8.The Autoimmune Diseases Coordinating Committee, NIH Publication 05-5140, The Autoimmune Diseases Coordinating Committee, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 2005. Progress in Autoimmune Disease Research, Report to Congress.
9.
9. D. E. Smilek, M. R. Ehlers, and G. T. Nepom, Dis. Models Mech. 7, 503 (2014).
http://dx.doi.org/10.1242/dmm.015099
10.
10. D. R. Fooksman et al., Annu. Rev. Immunol. 28, 79 (2010).
http://dx.doi.org/10.1146/annurev-immunol-030409-101308
11.
11. K. L. Angus and G. M. Griffiths, Curr. Opin. Cell Biol. 25, 85 (2013).
http://dx.doi.org/10.1016/j.ceb.2012.08.013
12.
12. M. E. Marcus and J. N. Leonard, Pharmaceuticals 6, 659 (2013).
http://dx.doi.org/10.3390/ph6050659
13.
13. A. V. Vlassov, S. Magdaleno, R. Setterquist, and R. Conrad, Biochim. Biophys. Acta, Gen. Subj. 1820, 940 (2012).
http://dx.doi.org/10.1016/j.bbagen.2012.03.017
14.
14. O. Gasser and J. A. Schifferli, Blood 104, 2543 (2004).
http://dx.doi.org/10.1182/blood-2004-01-0361
15.
15. E. Cocucci, G. Racchetti, and J. Meldolesi, Trends Cell Biol. 19, 43 (2009).
http://dx.doi.org/10.1016/j.tcb.2008.11.003
16.
16. B. György, M. E. Hung, X. O. Breakefield, and J. N. Leonard, Annu. Rev. Pharmacol. Toxicol. 55, 439 (2014).
http://dx.doi.org/10.1146/annurev-pharmtox-010814-124630
17.
17. Z. L. Ling, V. Combes, G. E. Grau, and N. J. C. King, Front. Immunol. 2, 67 (2011).
http://dx.doi.org/10.3389/fimmu.2011.00067
18.
18. I. Parolini et al., J. Biol. Chem. 284, 34211 (2009).
http://dx.doi.org/10.1074/jbc.M109.041152
19.
19. A. Montecalvo et al., Blood 119, 756 (2012).
http://dx.doi.org/10.1182/blood-2011-02-338004
20.
20. E. Segura, C. Guérin, N. Hogg, S. Amigorena, and C. Théry, J. Immunol. 179, 1489 (2007).
http://dx.doi.org/10.4049/jimmunol.179.3.1489
21.
21. A. Calzolari et al., J. Cell Sci. 119, 4486 (2006).
http://dx.doi.org/10.1242/jcs.03228
22.
22. P. D. Robbins and A. E. Morelli, Nat. Rev. Immunol. 14, 195 (2014).
http://dx.doi.org/10.1038/nri3622
23.
23. G. Raposo, H. W. Nijman, W. Stoorvogel, R. Liejendekker, C. V. Harding, C. J. Melief, and H. J. Geuze, J. Exp. Med. 183, 1161 (1996).
http://dx.doi.org/10.1084/jem.183.3.1161
24.
24. W. Kolowos, U. S. Gaipl, A. Sheriff, R. E. Voll, P. Heyder, P. Kern, J. R. Kalden, and M. Herrmann, Scand. J. Immunol. 61, 226 (2005).
http://dx.doi.org/10.1111/j.1365-3083.2005.01551.x
25.
25. B. Escudier et al., J. Transl. Med. 3, 10 (2005).
http://dx.doi.org/10.1186/1479-5876-3-10
26.
26. T. L. Whiteside, Biochem. Soc. Trans. 41, 245 (2013).
http://dx.doi.org/10.1042/BST20120265
27.
27. L. Zitvogel, A. Regnault, A. Lozier, J. Wolfers, C. Flament, D. Tenza, P. Ricciardi-Castagnoli, G. Raposo, and S. Amigorena, Nat. Med. 4, 594 (1998).
http://dx.doi.org/10.1038/nm0598-594
28.
28. S. Hao, O. Bai, J. Yuan, M. Qureshi, and J. Xiang, Cell Mol. Immunol. 3, 205 (2006).
29.
29. T. I. Näslund, U. Gehrmann, K. R. Qazi, M. C. I. Karlsson, and S. Gabrielsson, J. Immunol. 190, 2712 (2013).
http://dx.doi.org/10.4049/jimmunol.1203082
30.
30. T. I. Näslund, U. Gehrmann, and S. Gabrielsson, Oncoimmunology 2, e24533 (2013).
http://dx.doi.org/10.4161/onci.24533
31.
31. C. Beauvillain, S. Ruiz, R. Guiton, D. Bout, and I. Dimier-Poisson, Microbes Infect. 9, 1614 (2007).
http://dx.doi.org/10.1016/j.micinf.2007.07.002
32.
32. J. K. Schnitzer, S. Berzel, M. Fajardo-Moser, K. A. Remer, and H. Moll, Vaccine 28, 5785 (2010).
http://dx.doi.org/10.1016/j.vaccine.2010.06.077
33.
33. A. Sobo-Vujanovic, S. Munich, and N. L. Vujanovic, Cell. Immunol. 289, 119 (2014).
http://dx.doi.org/10.1016/j.cellimm.2014.03.016
34.
34. A. Danesh, H. C. Inglis, R. P. Jackman, S. Wu, X. Deng, M. O. Muench, J. W. Heitman, and P. J. Norris, Blood 123, 687 (2014).
http://dx.doi.org/10.1182/blood-2013-10-530469
35.
35. L. Lugini et al., J. Immunol. 189, 2833 (2012).
http://dx.doi.org/10.4049/jimmunol.1101988
36.
36. J. Wahlgren, T. D. L. Karlson, P. Glader, E. Telemo, and H. Valadi, PLoS One 7, e49723 (2012).
http://dx.doi.org/10.1371/journal.pone.0049723
37.
37. F. Arslan et al., Stem Cell Res. 10, 301 (2013).
http://dx.doi.org/10.1016/j.scr.2013.01.002
38.
38. C. Yang, M. A. Ruffner, S. Kim, and P. D. Robbins, Eur. J. Immunol. 42, 1778 (2012).
http://dx.doi.org/10.1002/eji.201141978
39.
39. J. W. Kim, E. Wieckowski, D. D. Taylor, T. E. Reichert, S. Watkins, and T. L. Whiteside, Clin. Cancer Res. 11, 1010 (2005).
40.
40. T. K. Hoffmann, G. Dworacki, T. Tsukihiro, N. Meidenbauer, W. Gooding, J. T. Johnson, and T. L. Whiteside, Clin. Cancer Res. 8, 2553 (2002).
41.
41. G. Andreola et al., J. Exp. Med. 195, 1303 (2002).
http://dx.doi.org/10.1084/jem.20011624
42.
42. V. Huber et al., Gastroenterology 128, 1796 (2005).
http://dx.doi.org/10.1053/j.gastro.2005.03.045
43.
43. D. D. Taylor, Ç. Gerçel-Taylor, K. S. Lyons, J. Stanson, and T. L. Whiteside, Clin. Cancer Res. 9, 5113 (2003).
44.
44. D. D. Taylor and C. Gercel-Taylor, Br. J. Cancer 92, 305 (2005).
http://dx.doi.org/10.1038/sj.bjc.6602316
45.
45. K. S. Reiners et al., Mol. Ther. 21, 895 (2013).
http://dx.doi.org/10.1038/mt.2013.14
46.
46. A. Clayton, J. P. Mitchell, S. Linnane, M. D. Mason, and Z. Tabi, J. Immunol. 180, 7249 (2008).
http://dx.doi.org/10.4049/jimmunol.180.11.7249
47.
47. M. Szajnik, M. Czystowska, M. J. Szczepanski, M. Mandapathil, and T. L. Whiteside, PLoS One 5, e11469 (2010).
http://dx.doi.org/10.1371/journal.pone.0011469
48.
48. S. Yu et al., J. Immunol. 178, 6867 (2007).
http://dx.doi.org/10.4049/jimmunol.178.11.6867
49.
49. A. Clayton, S. Al-Taei, J. Webber, M. D. Mason, and Z. Tabi, J. Immunol. 187, 676 (2011).
http://dx.doi.org/10.4049/jimmunol.1003884
50.
50. I. S. Okoye, S. M. Coomes, V. S. Pelly, S. Czieso, V. Papayannopoulos, T. Tolmachova, M. C. Seabra, and M. S. Wilson, Immunity 41, 89 (2014).
http://dx.doi.org/10.1016/j.immuni.2014.05.019
51.
51. S. Kaur, S. P. Singh, A. G. Elkahloun, W. Wu, M. S. Abu-Asab, and D. D. Roberts, Matrix Biol. 37, 49 (2014).
http://dx.doi.org/10.1016/j.matbio.2014.05.007
52.
52. H. D. Lee, Y. H. Kim, and D. Kim, Eur. J. Immunol. 44, 1156 (2014).
http://dx.doi.org/10.1002/eji.201343660
53.
53. X. Li et al., PLoS One 7, e44045 (2012).
http://dx.doi.org/10.1371/journal.pone.0044045
54.
54. D. D. Taylor, S. Akyol, and C. Gercel-Taylor, J. Immunol. 176, 1534 (2006).
http://dx.doi.org/10.4049/jimmunol.176.3.1534
55.
55. J. Dalli, T. Montero-Melendez, L. V. Norling, X. Yin, C. Hinds, D. Haskard, M. Mayr, and M. Perretti, Mol. Cell. Proteomics 12, 2205 (2013).
http://dx.doi.org/10.1074/mcp.M113.028589
56.
56. M. Mesri and D. C. Altieri, J. Biol. Chem. 274, 23111 (1999).
http://dx.doi.org/10.1074/jbc.274.33.23111
57.
57. E. Pluskota, N. M. Woody, D. Szpak, C. M. Ballantyne, D. A. Soloviev, D. I. Simon, and E. F. Plow, Blood 112, 2327 (2008).
http://dx.doi.org/10.1182/blood-2007-12-127183
58.
58. L. Ramachandra et al., Infect. Immun. 78, 5116 (2010).
http://dx.doi.org/10.1128/IAI.01089-09
59.
59. S. B. Walters, J. Kieckbusch, G. Nagalingam, A. Swain, S. L. Latham, G. E. R. Grau, W. J. Britton, V. Combes, and B. M. Saunders, J. Immunol. 190, 669 (2013).
http://dx.doi.org/10.4049/jimmunol.1201856
60.
60. R. B. Arteaga et al., Am. J. Cardiol. 98, 70 (2006).
http://dx.doi.org/10.1016/j.amjcard.2006.01.054
61.
61. A. Scanu, N. Molnarfi, K. J. Brandt, L. Gruaz, J.-M. Dayer, and D. Burger, J. Leukocyte Biol. 83, 921 (2008).
http://dx.doi.org/10.1189/jlb.0807551
62.
62. C. Obregon, B. Rothen-Rutishauser, S. K. Gitahi, P. Gehr, and L. P. Nicod, Am. J. Pathol. 169, 2127 (2006).
http://dx.doi.org/10.2353/ajpath.2006.060453
63.
63. C. Eken, S. Sadallah, P. J. Martin, S. Treves, and J. A. Schifferli, Immunobiology 218, 382 (2013).
http://dx.doi.org/10.1016/j.imbio.2012.05.021
64.
64. B. K. Pliyev, M. V. Kalintseva, S. V. Abdulaeva, K. N. Yarygin, and V. G. Savchenko, Cytokine 65, 126 (2014).
http://dx.doi.org/10.1016/j.cyto.2013.11.010
65.
65. S. Sadallah, C. Eken, P. J. Martin, and J. A. Schifferli, J. Immunol. 186, 6543 (2011).
http://dx.doi.org/10.4049/jimmunol.1002788
66.
66. E. M. Vasina, S. Cauwenberghs, M. A. H. Feijge, J. W. M. Heemskerk, C. Weber, and R. R. Koenen, Cell Death Dis. 2, e210 (2011).
http://dx.doi.org/10.1038/cddis.2011.94
67.
67. J. H. W. Distler, L. C. Huber, A. J. Hueber, C. F. Reich III, S. Gay, O. Distler, and D. S. Pisetsky, Apoptosis 10, 731 (2005).
http://dx.doi.org/10.1007/s10495-005-2941-5
68.
68. W.-H. Tsai, C.-H. Shih, S.-Y. Feng, I.-T. Li, S.-C. Chang, Y.-C. Lin, and H.-C. Hsu, Cell. Physiol. Biochem. 33, 594 (2014).
http://dx.doi.org/10.1159/000358637
69.
69. A. Clayton, C. L. Harris, J. Court, M. D. Mason, and B. P. Morgan, Eur. J. Immunol. 33, 522 (2003).
http://dx.doi.org/10.1002/immu.200310028
70.
70. R. H. Fang, C.-M. J. Hu, B. T. Luk, W. Gao, J. A. Copp, Y. Tai, D. E. O'Connor, and L. Zhang, Nano Lett. 14, 2181 (2014).
http://dx.doi.org/10.1021/nl500618u
71.
71. N. E. Toledano Furman, Y. Lupu-Haber, T. Bronshtein, L. Kaneti, N. Letko, E. Weinstein, L. Baruch, and M. Machluf, Nano Lett. 13, 3248 (2013).
http://dx.doi.org/10.1021/nl401376w
72.
72. J. A. Copp, R. H. Fang, B. T. Luk, C.-M. J. Hu, W. Gao, K. Zhang, and L. Zhang, Proc. Natl. Acad. Sci. 111, 13481 (2014).
http://dx.doi.org/10.1073/pnas.1412420111
73.
73. C.-M. J. Hu, R. H. Fang, J. Copp, B. T. Luk, and L. Zhang, Nat. Nanotechnol. 8, 336 (2013).
http://dx.doi.org/10.1038/nnano.2013.54
74.
74. M. J. Mitchell, E. Wayne, K. Rana, C. B. Schaffer, and M. R. King, Proc. Natl. Acad. Sci. 111, 930 (2014).
http://dx.doi.org/10.1073/pnas.1316312111
75.
75. M. Porotto, F. Yi, A. Moscona, and D. A. LaVan, PLoS One 6, e16874 (2011).
http://dx.doi.org/10.1371/journal.pone.0016874
76.
76. G. P. Robbins, R. L. Saunders, J. B. Haun, J. Rawson, M. J. Therien, and D. A. Hammer, Langmuir 26, 14089 (2010).
http://dx.doi.org/10.1021/la1017032
77.
77. E. F. Plow and P. Kelly, in Antithrombotic Drug Therapy in Cardiovascular Disease ( Springer, New York, 2010), pp. 3–17.
78.
78. W. Kim, C. Haller, E. Dai, X. Wang, C. E. Hagemeyer, D. R. Liu, K. Peter, and E. L. Chaikof, Angew. Chem. 127, 1481 (2014).
http://dx.doi.org/10.1002/ange.201408529
79.
79. C.-M. J. Hu, L. Zhang, S. Aryal, C. Cheung, R. H. Fang, and L. Zhang, Proc. Natl. Acad. Sci. 108, 10980 (2011).
http://dx.doi.org/10.1073/pnas.1106634108
80.
80. W. Gao, R. Fang, S. Thamphiwatana, B. T. Luk, J. Li, P. Angsantikul, Q. Zhang, C.-M. J. Hu, and L. Zhang, Nano Lett. 15, 1403 (2015).
http://dx.doi.org/10.1021/nl504798g
81.
81. J. J. Moon, H. Suh, A. V. Li, C. F. Ockenhouse, A. Yadava, and D. J. Irvine, Proc. Natl. Acad. Sci. 109, 1080 (2012).
http://dx.doi.org/10.1073/pnas.1112648109
82.
82. B. G. De Geest, M. A. Willart, B. N. Lambrecht, C. Pollard, C. Vervaet, J. P. Remon, J. Grooten, and S. De Koker, Angew. Chem. 124, 3928 (2012).
http://dx.doi.org/10.1002/ange.201200048
83.
83. T. J. Powell et al., Vaccine 31, 1898 (2013).
http://dx.doi.org/10.1016/j.vaccine.2013.02.027
84.
84. A. Bershteyn, M. C. Hanson, M. P. Crespo, J. J. Moon, A. V. Li, H. Suh, and D. J. Irvine, J. Controlled Release 157, 354 (2012).
http://dx.doi.org/10.1016/j.jconrel.2011.07.029
85.
85. H. A. Carleton, M. Lara-Tejero, X. Liu, and J. E. Galán, Nat. Commun. 4, 1590 (2013).
http://dx.doi.org/10.1038/ncomms2594
86.
86. V. Appay, D. C. Douek, and D. A. Price, Nat. Med. 14, 623 (2008).
http://dx.doi.org/10.1038/nm.f.1774
87.
87. C. Mora-Solano and J. H. Collier, J. Mater. Chem. B 2, 2409 (2014).
http://dx.doi.org/10.1039/C3TB21549K
88.
88. J. C. Sunshine and J. J. Green, Nanomedicine 8, 1173 (2013).
http://dx.doi.org/10.2217/nnm.13.98
89.
89. M. O. Butler et al., Int. Immunol. 22, dxq440 (2010).
http://dx.doi.org/10.1093/intimm/dxq440
90.
90. E. R. Steenblock, S. H. Wrzesinski, R. A. Flavell, and T. M. Fahmy, 9, 451 (2009).
91.
91. Q. Ding, J. Chen, X. Wei, W. Sun, J. Mai, Y. Yang, and Y. Xu, Pharm. Res. 30, 60 (2013).
http://dx.doi.org/10.1007/s11095-012-0849-7
92.
92. C. Shen, K. Cheng, S. Miao, W. Wang, Y. He, F. Meng, and J. Zhang, Immunol. Lett. 150, 1 (2013).
http://dx.doi.org/10.1016/j.imlet.2013.01.003
93.
93. K. Perica et al., Nanomed. Nanotechnol., Biol. Med. 10, 119 (2014).
http://dx.doi.org/10.1016/j.nano.2013.06.015
94.
94. K. Perica, A. Tu, A. Richter, J. G. Bieler, M. Edidin, and J. P. Schneck, ACS Nano 8, 2252 (2014).
http://dx.doi.org/10.1021/nn405520d
95.
95. B. Chen, Y. Jia, Y. Gao, L. Sanchez, S. M. Anthony, and Y. Yu, ACS Appl. Mater. Interfaces 6, 18435 (2014).
http://dx.doi.org/10.1021/am505510m
96.
96. J. C. Sunshine, K. Perica, J. P. Schneck, and J. J. Green, Biomaterials 35, 269 (2014).
http://dx.doi.org/10.1016/j.biomaterials.2013.09.050
97.
97. E. R. Steenblock, T. Fadel, M. Labowsky, J. S. Pober, and T. M. Fahmy, J. Biol. Chem. 286, 34883 (2011).
http://dx.doi.org/10.1074/jbc.M111.276329
98.
98. J. R. Park et al., Mol. Ther. 15, 825 (2007).
http://dx.doi.org/10.1038/sj.mt.6300104
99.
99. D. Rushworth, B. Jena, S. Olivares, S. Maiti, N. Briggs, S. Somanchi, J. Dai, D. Lee, and L. J. N. Cooper, J. Immunother. 37, 204 (2014).
http://dx.doi.org/10.1097/CJI.0000000000000032
100.
100. G. A. Van Seventer, Y. Shimizu, K. J. Horgan, and S. Shaw, J. Immunol. 144, 4579 (1990).
101.
101. C. Chittasupho, L. Shannon, T. J. Siahaan, C. M. Vines, and C. Berkland, ACS Nano 5, 1693 (2011).
http://dx.doi.org/10.1021/nn102159g
102.
102. Y.-C. Lo, M. A. Edidin, and J. D. Powell, J. Immunol. 191, 5107 (2013).
http://dx.doi.org/10.4049/jimmunol.1301433
103.
103. Y. K. Kim, R. Que, S.-W. Wang, and W. F. Liu, Adv. Healthcare Mater. 3, 989 (2014).
http://dx.doi.org/10.1002/adhm.201300532
104.
104. M. Gray, K. Miles, D. Salter, D. Gray, and J. Savill, Proc. Natl. Acad. Sci. 104, 14080 (2007).
http://dx.doi.org/10.1073/pnas.0700326104
105.
105. D. R. Getts et al., J. Immunol. 187, 2405 (2011).
http://dx.doi.org/10.4049/jimmunol.1004175
106.
106. A. Lutterotti et al., Sci. Transl. Med. 5, 188ra75 (2013).
http://dx.doi.org/10.1126/scitranslmed.3006168
107.
107. S. Kontos, I. C. Kourtis, K. Y. Dane, and J. A. Hubbell, Proc. Natl. Acad. Sci. 110, E60 (2013).
http://dx.doi.org/10.1073/pnas.1216353110
108.
108. D. R. Getts et al., Nat. Biotechnol. 30, 1217 (2012).
http://dx.doi.org/10.1038/nbt.2434
109.
109. S. Tsai et al., Immunity 32, 568 (2010).
http://dx.doi.org/10.1016/j.immuni.2010.03.015
110.
110. R. A. Maldonado et al., Proc. Natl. Acad. Sci. 112, E156 (2015).
http://dx.doi.org/10.1073/pnas.1408686111
111.
111. Z. Hunter, D. P. McCarthy, W. T. Yap, C. T. Harp, D. R. Getts, L. D. Shea, and S. D. Miller, ACS Nano 8, 2148 (2014).
http://dx.doi.org/10.1021/nn405033r
112.
112. S. N. Thomas, E. Vokali, A. W. Lund, J. A. Hubbell, and M. A. Swartz, Biomaterials 35, 814 (2014).
http://dx.doi.org/10.1016/j.biomaterials.2013.10.003
113.
113. S. C. Alley, N. M. Okeley, and P. D. Senter, Curr. Opin. Chem. Biol. 14, 529 (2010).
http://dx.doi.org/10.1016/j.cbpa.2010.06.170
114.
114. P. J. McEnaney, K. J. Fitzgerald, A. X. Zhang, E. F. Douglass, Jr., W. Shan, A. Balog, M. D. Kolesnikova, and D. A. Spiegel, J. Am. Chem. Soc. 7, 1139 (2014).
115.
115. P. J. McEnaney, C. G. Parker, A. X. Zhang, and D. A. Spiegel, ACS Chem. Biol. 7, 1139 (2012).
http://dx.doi.org/10.1021/cb300119g
116.
116. C. G. Parker et al., Chem. Sci. 5, 2311 (2014).
http://dx.doi.org/10.1039/c4sc00484a
117.
117. R. T. C. Sheridan, J. Hudon, J. A. Hank, P. M. Sondel, and L. L. Kiessling, ChemBioChem 15, 1393 (2014).
http://dx.doi.org/10.1002/cbic.201402019
118.
118. C. E. Jakobsche, C. G. Parker, R. N. Tao, M. D. Kolesnikova, E. F. Douglass, Jr., and D. A. Spiegel, ACS Chem. Biol. 8, 2404 (2013).
http://dx.doi.org/10.1021/cb4004942
119.
119. J. J. L. M. Cornelissen, J. J. J. M. Donners, R. de Gelder, W. S. Graswinckel, G. A. Metselaar, A. E. Rowan, N. A. J. M. Sommerdijk, and R. J. M. Nolte, Science 293, 676 (2001).
http://dx.doi.org/10.1126/science.1062224
120.
120. S. Mandal et al., Chem. Sci. 4, 4168 (2013).
http://dx.doi.org/10.1039/c3sc51399h
121.
121. S. Mandal, R. Hammink, J. Tel, Z. H. Eksteen-Akeroyd, A. E. Rowan, K. Blank, and C. G. Figdor, ACS Chem. Biol. 10, 485 (2014).
http://dx.doi.org/10.1021/cb500455g
122.
122. R. J. Mancini, J. K. Tom, and A. P. Esser-Kahn, Angew. Chem. 126, 193 (2014).
http://dx.doi.org/10.1002/ange.201306551
123.
123. K. A. Ryu, L. Stutts, J. K. Tom, R. J. Mancini, and A. P. Esser-Kahn, J. Am. Chem. Soc. 136, 10823 (2014).
http://dx.doi.org/10.1021/ja412314j
124.
124. T. Lan et al., Org. Biomol. Chem. 11, 1049 (2013).
http://dx.doi.org/10.1039/c2ob26946e
125.
125. J. Lee, J. W. Sohn, Y. Zhang, K. W. Leong, D. Pisetsky, and B. A. Sullenger, Proc. Natl. Acad. Sci. 108, 14055 (2011).
http://dx.doi.org/10.1073/pnas.1105777108
126.
126. E. K. Holl, K. L. Shumansky, G. Pitoc, E. Ramsburg, and B. A. Sullenger, PLoS One 8, e69413 (2013).
http://dx.doi.org/10.1371/journal.pone.0069413
127.
127. J. K. Tom, R. J. Mancini, and A. P. Esser-Kahn, Chem. Commun. 49, 9618 (2013).
http://dx.doi.org/10.1039/c3cc45468a
128.
128. L. R. Prost, J. C. Grim, M. Tonelli, and L. L. Kiessling, ACS Chem. Biol. 7, 1603 (2012).
http://dx.doi.org/10.1021/cb300260p
129.
129. R. Ribeiro-Viana, M. Sánchez-Navarro, J. Luczkowiak, J. R. Koeppe, R. Delgado, J. Rojo, and B. G. Davis, Nat. Commun. 3, 1303 (2012).
http://dx.doi.org/10.1038/ncomms2302
130.
130. Y. J. Kang, H. J. Yang, S. Jeon, Y. Kang, Y. Do, S. Y. Hong, and S. Kang, Macromol. Biosci. 14, 619 (2014).
http://dx.doi.org/10.1002/mabi.201300528
131.
131. J. Luczkowiak, A. Muñoz, M. Sánchez-Navarro, R. Ribeiro-Viana, A. Ginieis, B. M. Illescas, N. Martín, R. Delgado, and J. Rojo, Biomacromolecules 14, 431 (2013).
http://dx.doi.org/10.1021/bm3016658
132.
132. A. H. Courtney, N. R. Bennett, D. B. Zwick, J. Hudon, and L. L. Kiessling, ACS Chem. Biol. 9, 202 (2013).
http://dx.doi.org/10.1021/cb400532y
133.
133. P. Kaewsapsak, O. Esonu, and D. H. Dube, ChemBioChem 14, 721 (2013).
http://dx.doi.org/10.1002/cbic.201300006
134.
134. V. N. Tra and D. H. Dube, Chem. Commun. 50, 4659 (2014).
http://dx.doi.org/10.1039/c4cc00660g
135.
135. N. Muenchmeier et al., PLoS One 8, e72749 (2013).
http://dx.doi.org/10.1371/journal.pone.0072749
136.
136. J. E. Hudak, S. M. Canham, and C. R. Bertozzi, Nat. Chem. Biol. 10, 69 (2014).
http://dx.doi.org/10.1038/nchembio.1388
137.
137. L. K. Swee, S. Lourido, G. W. Bell, J. R. Ingram, and H. L. Ploegh, ACS Chem. Biol. 10, 460 (2014).
http://dx.doi.org/10.1021/cb500462t
138.
138. R. E. Cone, J. J. Marchalonis, and R. T. Rolley, J. Exp. Med. 134, 1373 (1971).
http://dx.doi.org/10.1084/jem.134.6.1373
139.
139. J. G. Sathish et al., Nat. Rev. Drug Discovery 12, 306 (2013).
http://dx.doi.org/10.1038/nrd3974
140.
140. B. Geering and M. Fussenegger, Trends Biotechnol. 2, 65 (2014).
141.
141. Z.-B. Deng et al., J. Immunol. 190, 3579 (2013).
http://dx.doi.org/10.4049/jimmunol.1203170
142.
142. H. De La Peña, J. A. Madrigal, S. Rusakiewicz, M. Bencsik, G. W. V. Cave, A. Selman, R. C. Rees, P. J. Travers, and I. A. Dodi, J. Immunol. Methods 344, 121 (2009).
http://dx.doi.org/10.1016/j.jim.2009.03.011
143.
143. S. C. Jang et al., ACS Nano 7, 7698 (2013).
http://dx.doi.org/10.1021/nn402232g
144.
144. S. A. A. Kooijmans, P. Vader, S. M. van Dommelen, W. W. van Solinge, and R. M. Schiffelers, Int. J. Nanomed. 2012, 1525 (2012).
http://dx.doi.org/10.2147/ijn.s29661
145.
145. L. V. Ly, M. Sluijter, M. Versluis, G. P. M. Luyten, S. H. van der Burg, C. J. M. Melief, M. J. Jager, and T. van Hall, Cancer Res. 70, 8339 (2010).
http://dx.doi.org/10.1158/0008-5472.CAN-10-2288
146.
146. W. J. Lesterhuis, J. B. A. G. Haanen, and C. J. A. Punt, Nat. Rev. Drug Discovery 10, 591 (2011).
http://dx.doi.org/10.1038/nrd3500
147.
147. D. R. Getts et al., Sci. Transl. Med. 6, 219ra7 (2014).
http://dx.doi.org/10.1126/scitranslmed.3007563
http://aip.metastore.ingenta.com/content/avs/journal/bip/10/3/10.1116/1.4922798
Loading
/content/avs/journal/bip/10/3/10.1116/1.4922798
Loading

Data & Media loading...

Abstract

Organisms depend upon complex intercellular communication to initiate, maintain, or suppress immune responses during infection or disease. Communication occurs not only between different types of immune cells, but also between immune cells and nonimmune cells or pathogenic entities. It can occur directly at the cell–cell contact interface, or indirectly through secreted signals that bind cell surface molecules. Though secreted signals can be soluble, they can also be particulate in nature and direct communication at the cell–particle interface. Secreted extracellular vesicles are an example of native particulate communication, while viruses are examples of foreign particulates. Inspired by communication at natural immunological interfaces, biomimetic materials and designer molecules have been developed to mimic and direct the type of immune response. This review describes the ways in which native, biomimetic, and designer materials can mediate immune responses. Examples include extracellular vesicles, particles that mimic immune cells or pathogens, and hybrid designer molecules with multiple signaling functions, engineered to target and bind immune cell surface molecules. Interactions between these materials and immune cells are leading to increased understanding of natural immune communication and function, as well as development of immune therapeutics for the treatment of infection, cancer, and autoimmune disease.

Loading

Full text loading...

/deliver/fulltext/avs/journal/bip/10/3/1.4922798.html;jsessionid=JaHPqA50A6WcsORDwbqrRLyP.x-aip-live-03?itemId=/content/avs/journal/bip/10/3/10.1116/1.4922798&mimeType=html&fmt=ahah&containerItemId=content/avs/journal/bip
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=avspublications.org/10/3/10.1116/1.4922798&pageURL=http://scitation.aip.org/content/avs/journal/bip/10/3/10.1116/1.4922798'
Right1,Right2,Right3,