Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/avs/journal/bip/10/3/10.1116/1.4928722
1.
1. M. Sagisaka et al., Langmuir 24, 10116 (2008).
http://dx.doi.org/10.1021/la8014145
2.
2. S. Banerjee, S. Sutanto, J. M. Kleijn, and M. A. C. Stuart, Colloids Surf. A 415, 1 (2012).
http://dx.doi.org/10.1016/j.colsurfa.2012.10.004
3.
3. S. Banerjee, S. , Sutanto, J. M. Kleijn, M. J. E. van Roosmalen, G.-J. Witkamp, and M. A. C. Stuart, Adv. Colloid Interface Sci. 175, 11 (2012).
http://dx.doi.org/10.1016/j.cis.2012.03.005
4.
4. E. Torino, E. Reverchon, and K. P. Johnston, J. Colloid Interface Sci. 348, 469 (2010).
http://dx.doi.org/10.1016/j.jcis.2010.04.027
5.
5. W. Shang, X. Zhang, X. Yang, and S. Zhang, RSC Adv. 4, 24083 (2014).
http://dx.doi.org/10.1039/c4ra02131b
6.
6. M. Haruki, H. Yawata, M. Nishimoto, M. Tanto, S.-I. Kihara, and S. Takishima, Fluid Phase Equilib. 261, 92 (2007).
http://dx.doi.org/10.1016/j.fluid.2007.07.054
7.
7. C. C. Beh, R. Mammucari, and N. R. Foster, Chem. Eng. J. 188, 1 (2012).
http://dx.doi.org/10.1016/j.cej.2012.01.129
8.
8. P. S. Shah, S. Husain, K. P. Johnston, and B. A. Korgel, J. Phys. Chem. B 106, 12178 (2002).
http://dx.doi.org/10.1021/jp026180b
9.
9. K. A. Bartscherer, M. Minier, and H. Renon, Fluid Phase Equilib. 107, 93 (1995).
http://dx.doi.org/10.1016/0378-3812(95)02726-U
10.
10. L. Lesoin, O. Boutin, C. Crampon, and E. Badens, Colloids Surf. A 377, 1 (2011).
http://dx.doi.org/10.1016/j.colsurfa.2011.01.027
11.
11. K. Otake, T. Imura, H. Sakai, and M. Abe, Langmuir 17, 3898 (2001).
http://dx.doi.org/10.1021/la010122k
12.
12. P. Walde, H. Umakoshi, P. Stano, and F. Mavelli, Chem. Commun. 50, 10177 (2014).
http://dx.doi.org/10.1039/C4CC02812K
13.
13. L. Q. Tuan, H. Umakoshi, T. Shimanouchi, and R. Kuboi, Langmuir 24, 350 (2008).
http://dx.doi.org/10.1021/la702690a
14.
14. K. Suga, T. Tanabe, H. Tomita, T. Shimanouchi, and H. Umakoshi, Nucleic Acid Res. 39, 8891 (2011).
http://dx.doi.org/10.1093/nar/gkr568
15.
15. T. Shimanouchi, N. Kitaura, R. Onishi, H. Umakoshi, and R. Kuboi, AIChE J. 58, 3625 (2012).
http://dx.doi.org/10.1002/aic.13772
16.
16. T. Ishigami and H. Umakoshi, Solvent Extr. Res. Dev., Jpn. 20, 213 (2013).
http://dx.doi.org/10.15261/serdj.20.213
17.
17. H. Nagami, H. Umakoshi, T. Kitaura, G. L. Thompson III, T. Shimanouchi, and R. Kuboi, Biochem. Eng. J. 84, 66 (2014).
http://dx.doi.org/10.1016/j.bej.2013.12.017
18.
18. K. Hayashi, P. Walde, T. Miyazaki, K. Sakayama, A. Nakamura, K. Kameda, S. Masuda, H. Umakoshi, and K. Kato, J. Drug Delivery 2012, 842785.
http://dx.doi.org/10.1155/2012/842785
19.
19. K. Hayashi, T. Tatsui, T. Shimanouchi, and H. Umakoshi, Colloid Surf. B 106, 258 (2013).
http://dx.doi.org/10.1016/j.colsurfb.2012.12.022
20.
20. P. Walde and S. Ichikawa, Biomol. Eng. 18, 143 (2001).
http://dx.doi.org/10.1016/S1389-0344(01)00088-0
21.
21. K. Hayashi, T. Shimanouchi, K. Kato, T. Miyazaki, A. Nakamura, and H. Umakoshi, Colloid Surf. B 87, 28 (2011).
http://dx.doi.org/10.1016/j.colsurfb.2011.04.029
22.
22. K. Suga and H. Umakoshi, Langmuir 29, 4830 (2013).
http://dx.doi.org/10.1021/la304768f
23.
23. H. S. Cho et al., Lab Chip 15, 373 (2015).
http://dx.doi.org/10.1039/C4LC01096E
24.
24. H. Komatsu and S. Okada, Biochim. Biophyis. Acta, Biomembr. 1235, 270 (1995).
http://dx.doi.org/10.1016/0005-2736(95)80014-7
25.
25. H. Umakoshi and K. Suga, Solvent Extr. Res. Dev., Jpn. 20, 1 (2013).
http://dx.doi.org/10.15261/serdj.20.1
26.
26. F. Iwasaki, K. Suga, and H. Umakoshi, J. Phys. Chem. B 119, 9772 (2015).
http://dx.doi.org/10.1021/acs.jpcb.5b03762
27.
27. B. R. Lentz, Chem. Phys. Lipids 50, 171 (1989).
http://dx.doi.org/10.1016/0009-3084(89)90049-2
28.
28. L. W. Diamond and N. N. Akinfiev, Fluid Phase Equilib. 208, 265 (2003).
http://dx.doi.org/10.1016/S0378-3812(03)00041-4
29.
29. M. Takayama, S. Itoh, T. Nagasaki, and I. Tanimizu, Clin. Chim. Acta 79, 93 (1977).
http://dx.doi.org/10.1016/0009-8981(77)90465-X
30.
30. R. G. Gilbert, M. Hess, A. D. Jenkins, R. G. Jones, P. Kratochvíl, and R. F. T. Stepto, Pure Appl. Chem. 81, 351 (2009).
http://dx.doi.org/10.1351/PAC-REC-08-05-02
31.
31. T. Parasassi, E. K. Krasnowska, L. Bagatolli, and E. Gratton, J. Fluoresc. 8, 365 (1998).
http://dx.doi.org/10.1023/A:1020528716621
32.
32.See supplementary material at http://dx.doi.org/10.1116/1.4928722 for Raman spectroscopic analysis (supporting methods); Raman spectra and packing densities of DMPC vesicles (Fig. S1); Cartesian diagram of DOPC liposomes (Fig. S2); preparation conditions and Cartesian diagram of DMPC vesicles (Fig. S3); and supporting reference.[Supplementary Material]
33.
33. K. Suga, T. Yoshida, H. Ishii, Y. Okamoto, D. Nagao, M. Konno, and H. Umakoshi, Anal. Chem. 87, 4772 (2015).
http://dx.doi.org/10.1021/ac5048532
34.
34. Y. P. Patil and S. Jadhav, Chem. Phys. Lipids 177, 8 (2014).
http://dx.doi.org/10.1016/j.chemphyslip.2013.10.011
http://aip.metastore.ingenta.com/content/avs/journal/bip/10/3/10.1116/1.4928722
Loading
/content/avs/journal/bip/10/3/10.1116/1.4928722
Loading

Data & Media loading...

Abstract

Phospholipid vesicles were prepared by the nonsolvent method using high-pressure CO/water systems. The membrane properties of vesicles prepared at different pressures and temperatures were mainly characterized based on analysis of the membrane fluidity and membrane polarity, using the fluorescent probes 1,6-diphenyl-1,3,5-hexatriene and 6-dodecanoyl-,-dimethyl-2-naphthylamine, respectively. The CO/water and the CO/water two-phase (heterogeneous) systems resulted in the formation of vesicles with high yield (ca. 85%–88%). The membrane fluidity and polarity of the vesicles were similar to those of liposomes prepared by the conventional method. It is suggested that high-pressure CO can be used to form an appropriate hydrophobic–hydrophilic interface where phospholipid molecules as a self-assembled membrane.

Loading

Full text loading...

/deliver/fulltext/avs/journal/bip/10/3/1.4928722.html;jsessionid=ZWgZTArOOIOzZB4NoLDUdvby.x-aip-live-02?itemId=/content/avs/journal/bip/10/3/10.1116/1.4928722&mimeType=html&fmt=ahah&containerItemId=content/avs/journal/bip
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=avspublications.org/10/3/10.1116/1.4928722&pageURL=http://scitation.aip.org/content/avs/journal/bip/10/3/10.1116/1.4928722'
Right1,Right2,Right3,