Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/avs/journal/bip/11/1/10.1116/1.4934628
1.
1. R. Adams, J. Vac. Sci. Technol. A 1, 12 (1983).
http://dx.doi.org/10.1116/1.572301
2.
2. A. J. Sedriks, Corrosion of Stainless Steels, 2nd ed. ( Wiley, New York, 1996).
3.
3. N. Baddoo, J. Constr. Steel Res. 64, 1199 (2008).
http://dx.doi.org/10.1016/j.jcsr.2008.07.011
4.
4.WHO, “Guidelines for drinking-water quality,” 2011, www.who.int/water_sanitation_health/publications/2011/dwq_guidelines/en/index.html.
5.
5.CoE, Metals and Alloys used in Food Contact Materials and Articles, A Practical Guide for Manufacturers and Regulators ( European Directorate for the Quality of Medicines & HealthCare (EDQM), Strasbourg, 2013).
6.
6. J. P. Thyssen and T. Menné, Chem. Res. Toxicol. 23, 309 (2010).
http://dx.doi.org/10.1021/tx9002726
7.
7. T. Santonen, H. Stockmann-Juvala, and A. Zitting, Review on Toxicity of Stainless Steel ( Finnish Institute of Occupational Health, Helsinki, Finland, 2010).
8.
8. I. Milošev, Pure Appl. Chem. 83, 309 (2010).
http://dx.doi.org/10.1351/PAC-CON-10-07-09
9.
9. N. Hallab, J. J. Jacobs, and J. Black, Biomaterials 21, 1301 (2000).
http://dx.doi.org/10.1016/S0142-9612(99)00235-5
10.
10. Y. H. An and R. J. Friedman, J. Biomed. Mater. Res. 43, 338 (1998).
http://dx.doi.org/10.1002/(SICI)1097-4636(199823)43:3<338::AID-JBM16>3.0.CO;2-B
11.
11. G. Manivasagam, D. Dhinasekaran, and A. Rajamanickam, Recent Pat. Corros. Sci. 2, 40 (2010).
http://dx.doi.org/10.2174/1877610801002010040
12.
12. D. C. Hansen, Electrochem. Soc. Interface 17, 31 (2008).
13.
13. P. Schmuki, J. Solid State Electrochem. 6, 145 (2002).
http://dx.doi.org/10.1007/s100080100219
14.
14. I. Olefjord and L. Wegrelius, Corros. Sci. 31, 89 (1990).
http://dx.doi.org/10.1016/0010-938X(90)90095-M
15.
15. B. Pound, J. Biomed. Mater. Res. A 102, 1595 (2014).
http://dx.doi.org/10.1002/jbm.a.34798
16.
16. I. Olefjord and B.-O. Elfstrom, Corrosion 38, 46 (1982).
http://dx.doi.org/10.5006/1.3577318
17.
17. T. Hanawa, S. Hiromoto, A. Yamamoto, D. Kuroda, and K. Asami, Mater. Trans. 43, 3088 (2002).
http://dx.doi.org/10.2320/matertrans.43.3088
18.
18. I. Olefjord, Mater. Sci. Eng. 42, 161 (1980).
http://dx.doi.org/10.1016/0025-5416(80)90025-7
19.
19. K. Asami and K. Hashimoto, Corros. Sci. 19, 1007 (1979).
http://dx.doi.org/10.1016/S0010-938X(79)80091-8
20.
20. C.-O. A. Olsson and D. Landolt, Electrochim. Acta 48, 1093 (2003).
http://dx.doi.org/10.1016/S0013-4686(02)00841-1
21.
21. G. Herting, I. Odnevall Wallinder, and C. Leygraf, J. Environ. Monit. 10, 1084 (2008).
http://dx.doi.org/10.1039/b805058a
22.
22. N. Mazinanian, I. Odnevall Wallinder, and Y. Hedberg, J. Food Eng. 145, 51 (2015).
http://dx.doi.org/10.1016/j.jfoodeng.2014.08.006
23.
23. Y. Hedberg, M.-E. Karlsson, E. Blomberg, I. Odnevall Wallinder, and J. Hedberg, Colloid Surf. B 122, 216 (2014).
http://dx.doi.org/10.1016/j.colsurfb.2014.06.066
24.
24. Y. Hedberg, N. Mazinanian, and I. Odnevall Wallinder, Environ. Sci. Processes Impacts 15, 381 (2013).
http://dx.doi.org/10.1039/C2EM30818E
25.
25. G. Herting, D. Lindström, I. Odnevall Wallinder, and C. Leygraf, J. Food Eng. 93, 23 (2009).
http://dx.doi.org/10.1016/j.jfoodeng.2008.12.019
26.
26. S. Haupt and H.-H. Strehblow, Corros. Sci. 37, 43 (1995).
http://dx.doi.org/10.1016/0010-938X(94)00104-E
27.
27. B. Elsener and A. Rossi, Mater. Sci. Forum 192–194, 225 (1995).
http://dx.doi.org/10.4028/www.scientific.net/MSF.192-194.225
28.
28. R. Frankenthal and D. Malm, J. Electrochem. Soc. 123, 186 (1976).
http://dx.doi.org/10.1149/1.2132783
29.
29. Y. Hedberg, M. Norell, P. Linhardt, H. Bergqvist, and I. Odnevall Wallinder, Int. J. Electrochem. Sci. 7, 11655 (2012).
30.
30. Y. Hedberg, M. S. Killian, E. Blomberg, S. Virtanen, P. Schmuki, and I. Odnevall Wallinder, Langmuir 28, 16306 (2012).
http://dx.doi.org/10.1021/la3039279
31.
31. J. Noh, N. Laycock, W. Gao, and D. Wells, Corros. Sci. 42, 2069 (2000).
http://dx.doi.org/10.1016/S0010-938X(00)00052-4
32.
32. D. Wallinder, J. Pan, C. Leygraf, and A. Delblanc-Bauer, Corros. Sci. 41, 275 (1998).
http://dx.doi.org/10.1016/S0010-938X(98)00122-X
33.
33. R. M. Wang, S. Z. Luo, and L. Z. Jiang, J. Iron Steel Res. Int. 21, 131 (2014).
http://dx.doi.org/10.1016/S1006-706X(14)60021-2
34.
34. B. G. Pound, Corros. Rev. 32, 21 (2014).
http://dx.doi.org/10.1515/corrrev-2014-0008
35.
35. J. Lyklema, Fundamentals of Interface and Colloid Science, Volume II: Solid-Liquid Interfaces ( Academic, London, 1995).
36.
36. M. P. Gispert, A. P. Serro, R. Colaço, and B. Saramago, Surf. Interface Anal. 40, 1529 (2008).
http://dx.doi.org/10.1002/sia.2929
37.
37. L. Boulangé-Petermann, A. Doren, B. Baroux, and M.-N. Bellon-Fontaine, J. Colloid Interface Sci. 171, 179 (1995).
http://dx.doi.org/10.1006/jcis.1995.1165
38.
38. Y. Hedberg, X. Wang, J. Hedberg, M. Lundin, E. Blomberg, and I. Odnevall Wallinder, J. Mater. Sci.-Mater. Med. 24, 1015 (2013).
http://dx.doi.org/10.1007/s10856-013-4859-8
39.
39. S. Fukuzaki, H. Urano, and K. Nagata, J. Ferment. Bioeng. 80, 6 (1995).
http://dx.doi.org/10.1016/0922-338X(95)98168-K
40.
40. C. Exartier, S. Maximovitch, and B. Baroux, Corros. Sci. 46, 1777 (2004).
http://dx.doi.org/10.1016/j.corsci.2003.10.012
41.
41. G. Lefèvre, L. Čerović, S. Milonjić, M. Fédoroff, J. Finne, and A. Jaubertie, J. Colloid Interface Sci. 337, 449 (2009).
http://dx.doi.org/10.1016/j.jcis.2009.05.005
42.
42. N. Chandrasekaran, S. Dimartino, and C. J. Fee, Chem. Eng. Res. Des. 91, 1674 (2013).
http://dx.doi.org/10.1016/j.cherd.2013.07.017
43.
43. W. Norde, Macromol. Symp. 103, 5 (1996).
http://dx.doi.org/10.1002/masy.19961030104
44.
44. S. Flint, J. Brooks, and P. Bremer, J. Food Eng. 43, 235 (2000).
http://dx.doi.org/10.1016/S0260-8774(99)00157-0
45.
45. M. Mantel and J. Wightman, Surf. Interface Anal. 21, 595 (1994).
http://dx.doi.org/10.1002/sia.740210902
46.
46. G. Anand, F. Zhang, R. J. Linhardt, and G. Belfort, Langmuir 27, 1830 (2010).
http://dx.doi.org/10.1021/la1041794
47.
47. G. Lerebour, S. Cupferman, and M. N. Bellon-Fontaine, J. Appl. Microbiol. 97, 7 (2004).
http://dx.doi.org/10.1111/j.1365-2672.2004.02181.x
48.
48. G. Guillemot, G. Vaca-Medina, H. Martin-Yken, A. Vernhet, P. Schmitz, and M. Mercier-Bonin, Colloid Surf. B 49, 126 (2006).
http://dx.doi.org/10.1016/j.colsurfb.2006.03.001
49.
49. H. Ksontini, F. Kachouri, S. El Abed, S. Ibnsouda Koraichi, H. Meftah, H. Latrache, and M. Hamdi, J. Adhes. Sci. Technol. 27, 783 (2012).
http://dx.doi.org/10.1080/01694243.2012.727153
50.
50. L. L. Shreir, Corrosion: Metal/Environment Reactions, 3rd ed. ( Butterworth Heinemann, Oxford, 1994).
51.
51. D. E. J. Talbot and J. D. R. Talbot, Corrosion Science and Technology, 2nd ed. ( CRC, Boca Raton, FL, 2007).
52.
52. Z. Ahmad, Principles of Corrosion Engineering and Corrosion Control, 1st ed. ( Elsevier, Oxford, 2006).
53.
53. S. Virtanen, I. Milosev, E. Gomez-Barrena, R. Trebse, J. Salo, and Y. T. Konttinen, Acta Biomater. 4, 468 (2008).
http://dx.doi.org/10.1016/j.actbio.2007.12.003
54.
54. J. Soltis, Corros. Sci. 90, 5 (2015).
http://dx.doi.org/10.1016/j.corsci.2014.10.006
55.
55. A. Ismail, Z. M. Marjan, and C. W. Foong, Food Chem. 87, 581 (2004).
http://dx.doi.org/10.1016/j.foodchem.2004.01.010
56.
56. T. Katsube, H. Tabata, Y. Ohta, Y. Yamasaki, E. Anuurad, K. Shiwaku, and Y. Yamane, J. Agric. Food Chem. 52, 2391 (2004).
http://dx.doi.org/10.1021/jf035372g
57.
57. D. Koracevic, G. Koracevic, V. Djordjevic, S. Andrejevic, and V. Cosic, J. Clin. Pathol. 54, 356 (2001).
http://dx.doi.org/10.1136/jcp.54.5.356
58.
58. U. Schwertmann, Plant Soil 130, 1 (1991).
http://dx.doi.org/10.1007/BF00011851
59.
59. D. Suter, S. Banwart, and W. Stumm, Langmuir 7, 809 (1991).
http://dx.doi.org/10.1021/la00052a033
60.
60. B. Zinder, G. Furrer, and W. Stumm, Geochim. Cosmochim. Acta 50, 1861 (1986).
http://dx.doi.org/10.1016/0016-7037(86)90244-9
61.
61. V. I. Bruyére and M. A. Blesa, J. Electroanal. Chem. Interfacial Electrochem. 182, 141 (1985).
http://dx.doi.org/10.1016/0368-1874(85)85447-2
62.
62. L. Sigg and W. Stumm, Colloid Surf. 2, 101 (1981).
http://dx.doi.org/10.1016/0166-6622(81)80001-7
63.
63. J. S. LaKind and A. T. Stone, Geochim. Cosmochim. Acta 53, 961 (1989).
http://dx.doi.org/10.1016/0016-7037(89)90202-0
64.
64. R. F. Carbonaro, B. N. Gray, C. F. Whitehead, and A. T. Stone, Geochim. Cosmochim. Acta 72, 3241 (2008).
http://dx.doi.org/10.1016/j.gca.2008.04.010
65.
65. S. Namgung, M. J. Kwon, N. P. Qafoku, and G. Lee, Environ. Sci. Technol. 48, 10760 (2014).
http://dx.doi.org/10.1021/es503018u
66.
66. M. Dos Santos Afonso, P. J. Morando, M. A. Blesa, S. Banwart, and W. Stumm, J. Colloid Interface Sci. 138, 74 (1990).
http://dx.doi.org/10.1016/0021-9797(90)90181-M
67.
67. A. Amirbahman, L. Sigg, and U. von Gunten, J. Colloid Interface Sci. 194, 194 (1997).
http://dx.doi.org/10.1006/jcis.1997.5116
68.
68. M. A. Blesa, A. D. Weisz, P. J. Morando, J. A. Salfity, G. E. Magaz, and A. E. Regazzoni, Coord. Chem. Rev. 196, 31 (2000).
http://dx.doi.org/10.1016/S0010-8545(99)00005-3
69.
69. R. Cornell, A. Posner, and J. Quirk, J. Inorg. Nucl. Chem. 38, 563 (1976).
http://dx.doi.org/10.1016/0022-1902(76)80305-3
70.
70. W. Stumm, G. Furrer, E. Wieland, and B. Zinder, The Chemistry of Weathering, edited by J. I. Drever ( Springer, Dordrecht, the Netherlands, 1985), Vol. 149, pp. 5574.
71.
71. Y. Hedberg, J. Hedberg, Y. Liu, and I. Odnevall Wallinder, BioMetals 24, 1099 (2011).
http://dx.doi.org/10.1007/s10534-011-9469-7
72.
72. A. Kocijan, I. Milošev, and B. Pihlar, J. Mater. Sci. Mater. Med. 14, 69 (2003).
http://dx.doi.org/10.1023/A:1021505621388
73.
73. I. Milošev, J. Appl. Electrochem. 32, 311 (2002).
http://dx.doi.org/10.1023/A:1015595420097
74.
74. E. Baumgartner, M. A. Blesa, and A. J. Maroto, J. Chem. Soc., Dalton Trans. issue 9, 1649 (1982).
http://dx.doi.org/10.1039/dt9820001649
75.
75. Y. Zhang, N. Kallay, and E. Matijevic, Langmuir 1, 201 (1985).
http://dx.doi.org/10.1021/la00062a004
76.
76. A. Mörsdorf, I. Odnevall Wallinder, and Y. S. Hedberg, Regul. Toxicol. Pharm. 72, 447 (2015).
http://dx.doi.org/10.1016/j.yrtph.2015.05.027
77.
77. K. Midander, A. de Frutos, Y. Hedberg, G. Darrie, and I. Odnevall Wallinder, Integr. Environ. Assess. Manage. 6, 441 (2010).
http://dx.doi.org/10.1002/ieam.32
78.
78. Y. Hedberg, J. Gustafsson, H. L. Karlsson, L. Möller, and I. Odnevall Wallinder, Part. Fibre Toxicol. 7, 23 (2010).
http://dx.doi.org/10.1186/1743-8977-7-23
79.
79. Y. Hedberg, K. Midander, and I. Odnevall Wallinder, Integr. Environ. Assess. Manage. 6, 456 (2010).
http://dx.doi.org/10.1002/ieam.66
80.
80. P. M. Claesson, E. Blomberg, J. C. Fröberg, T. Nylander, and T. Arnebrant, Adv. Colloid Interface 57, 161 (1995).
http://dx.doi.org/10.1016/0001-8686(95)00241-H
81.
81. J. Schott, S. Brantley, D. Crerar, C. Guy, M. Borcsik, and C. Willaime, Geochim. Cosmochim. Acta 53, 373 (1989).
http://dx.doi.org/10.1016/0016-7037(89)90389-X
82.
82. E. A. Vogler, Biomaterials 33, 1201 (2012).
http://dx.doi.org/10.1016/j.biomaterials.2011.10.059
83.
83. S. L. Hirsh, D. R. McKenzie, N. J. Nosworthy, J. A. Denman, O. U. Sezerman, and M. M. M. Bilek, Colloid Surf. B 103, 395 (2013).
http://dx.doi.org/10.1016/j.colsurfb.2012.10.039
84.
84. J. Harvey, A. Bergdahl, H. Dadafarin, L. Ling, E. Davis, and S. Omanovic, Biotechnol. Lett. 34, 1159 (2012).
http://dx.doi.org/10.1007/s10529-012-0885-8
85.
85. M. Lundin, Y. Hedberg, T. Jiang, G. Herting, X. Wang, E. Thormann, E. Blomberg, and I. Odnevall Wallinder, J. Colloid Interface Sci. 366, 155 (2012).
http://dx.doi.org/10.1016/j.jcis.2011.09.068
86.
86. D. E. Wilcox, Inorg. Chim. Acta 361, 857 (2008).
http://dx.doi.org/10.1016/j.ica.2007.10.032
87.
87. C. Valero Vidal and A. Igual Muñoz, Bio-Tribocorrosion in Biomaterials and Medical Implants ( Woodhead Publishing Limited, Oxford, UK, 2013), pp. 187219.
88.
88. Y. Hedberg, M. Lundin, J. Jacksén, Å. Emmer, E. Blomberg, and I. Odnevall Wallinder, J. Appl. Electrochem. 42, 349 (2012).
http://dx.doi.org/10.1007/s10800-012-0404-6
89.
89. J. Yang and J. Black, Biomaterials 15, 262 (1994).
http://dx.doi.org/10.1016/0142-9612(94)90049-3
90.
90. C. Tkaczyk, O. L. Huk, F. Mwale, J. Antoniou, D. J. Zukor, A. Petit, and M. Tabrizian, J. Biomed. Mater. Res. A 94, 214 (2010).
http://dx.doi.org/10.1002/jbm.a.32700
91.
91. K. Salnikow, A. Zhitkovich, and M. Costa, Carcinogenesis 13, 2341 (1992).
http://dx.doi.org/10.1093/carcin/13.12.2341
92.
92. Y. Hedberg and K. Midander, Mater. Lett. 122, 223 (2014).
http://dx.doi.org/10.1016/j.matlet.2014.02.034
93.
93. N. Mazinanian, Y. Hedberg, and I. Odnevall Wallinder, Regul. Toxicol. Pharmacol. 65, 135 (2013).
http://dx.doi.org/10.1016/j.yrtph.2012.10.014
94.
94. X. Wang, G. Herting, I. Odnevall Wallinder, and E. Blomberg, Langmuir 30, 13877 (2014).
http://dx.doi.org/10.1021/la503170x
95.
95. X. Wang, G. Herting, I. Odnevall Wallinder, and E. Blomberg, Phys. Chem. Chem. Phys. 17, 18524 (2015).
http://dx.doi.org/10.1039/C5CP02306H
96.
96. L. A. García Rodenas, A. M. Iglesias, A. D. Weisz, P. J. Morando, and M. A. Blesa, Inorg. Chem. 36, 6423 (1997).
http://dx.doi.org/10.1021/ic9709382
97.
97. B. Little and R. Ray, Corrosion 58, 424 (2002).
http://dx.doi.org/10.5006/1.3277632
98.
98. I. B. Beech and J. Sunner, Curr. Opin. Biotechnol. 15, 181 (2004).
http://dx.doi.org/10.1016/j.copbio.2004.05.001
99.
99. D. Jones and P. Amy, Corrosion 58, 638 (2002).
http://dx.doi.org/10.5006/1.3287692
100.
100. M. Moradi, J. Duan, H. Ashassi-Sorkhabi, and X. Luan, Corros. Sci. 53, 4282 (2011).
http://dx.doi.org/10.1016/j.corsci.2011.08.043
101.
101. B. J. Little, J. S. Lee, and R. I. Ray, Electrochim. Acta 54, 2 (2008).
http://dx.doi.org/10.1016/j.electacta.2008.02.071
102.
102. J. Landoulsi, K. Cooksey, and V. Dupres, Biofouling 27, 1105 (2011).
http://dx.doi.org/10.1080/08927014.2011.629043
103.
103. P. Linhardt, “ MIC in hydroelectric power plants and approaches for risk assessment,” paper presented at the EuroCorr, Estoril, Portugal, September 1–5 (2013), Paper No. 1279.
104.
104. Y.-C. Tang, S. Katsuma, S. Fujimoto, and S. Hiromoto, Acta Biomater. 2, 709 (2006).
http://dx.doi.org/10.1016/j.actbio.2006.06.003
105.
105. P. Linhardt, Mater. Corros. (2015).
http://dx.doi.org/10.1002/maco.201508323
106.
106. R. J. K. Wood, Wear 261, 1012 (2006).
http://dx.doi.org/10.1016/j.wear.2006.03.033
107.
107. J. Geringer, K. Kim, J. Pellier, and D. D. Macdonald, Bio-tribocorrosion in Biomaterials and Medical Implants ( Woodhead Publishing Limited, Oxford, UK, 2013), pp. 4573.
108.
108. D. R. Haynes, T. N. Crotti, and M. R. Haywood, J. Biomed. Mater. Res. 49, 167 (2000).
http://dx.doi.org/10.1002/(SICI)1097-4636(200002)49:2<167::AID-JBM3>3.0.CO;2-9
109.
109. Y. Yan, A. Neville, and D. Dowson, J. Phys. D Appl. Phys. 39, 3206 (2006).
http://dx.doi.org/10.1088/0022-3727/39/15/S11
110.
110. T. J. Hakala et al., RSC Adv. 2, 9867 (2012).
http://dx.doi.org/10.1039/c2ra21018e
111.
111. M. Parkes, C. Myant, P. M. Cann, and J. S. Wong, Tribol. Int. 72, 108 (2014).
http://dx.doi.org/10.1016/j.triboint.2013.12.005
112.
112. C. Myant and P. Cann, J. Mech. Behav. Biomed. Mater. 34, 338 (2014).
http://dx.doi.org/10.1016/j.jmbbm.2013.12.016
113.
113. Y. S. Hedberg, M. Pettersson, S. Pradhan, I. Odnevall Wallinder, M. W. Rutland, and C. Persson, ACS Biomater. Sci. Eng. 1, 617 (2015).
http://dx.doi.org/10.1021/acsbiomaterials.5b00183
114.
114. Y. Yan, A. Neville, and D. Dowson, Tribol. Int. 40, 1492 (2007).
http://dx.doi.org/10.1016/j.triboint.2007.02.019
115.
115. M. Arenas, A. Conde, A. De Frutos, and J. de Damborenea, Corros. Eng., Sci. Technol. 49, 656 (2014).
http://dx.doi.org/10.1179/1743278214Y.0000000167
116.
116. P. M. May, P. W. Linder, and D. R. Williams, J. Chem. Soc., Dalton Trans. issue 6, 588 (1977).
http://dx.doi.org/10.1039/dt9770000588
117.
117. Y. Hedberg and I. Odnevall Wallinder, J. Biomed. Mater. Res. B 102, 693 (2014).
http://dx.doi.org/10.1002/jbm.b.33048
118.
118. Y. Hedberg and I. Odnevall Wallinder, Mater. Corros. 63, 481 (2012).
http://dx.doi.org/10.1002/maco.201005943
119.
119. S. Karimi, T. Nickchi, and A. M. Alfantazi, Appl. Surf. Sci. 258, 6087 (2012).
http://dx.doi.org/10.1016/j.apsusc.2012.03.008
120.
120. G. Morrison, G. Batley, and T. Florence, Chem. Br. 25, 791 (1989).
121.
121. M. Ernest, Metals and Their Compounds in the Environment: Occurrence, Analysis and Biological Relevance ( VCH, Weinheim, 1991).
122.
122. M. Samitz, S. Katz, and J. D. Shrager, J. Invest. Dermatol. 48, 514 (1967).
http://dx.doi.org/10.1038/jid.1967.83
123.
123. B. Gammelgaard, A. Fullerton, C. Avnstorp, and T. Menné, Contact Dermatitis 27, 302 (1992).
http://dx.doi.org/10.1111/j.1600-0536.1992.tb03284.x
124.
124. M. Samitz and J. Shrager, Arch. Dermatol. 94, 304 (1966).
http://dx.doi.org/10.1001/archderm.1966.01600270054010
125.
125. U. Siegenthaler, A. Laine, and L. Polak, J. Invest. Dermatol. 80, 44 (1983).
http://dx.doi.org/10.1111/1523-1747.ep12531034
126.
126. E. Shmunes, S. A. Katz, and M. Samitz, J. Invest. Dermatol. 60, 193 (1973).
http://dx.doi.org/10.1111/1523-1747.ep12724462
127.
127. M. B. Hansen, J. D. Johansen, and T. Menné, Contact Dermatitis 49, 206 (2003).
http://dx.doi.org/10.1111/j.0105-1873.2003.0230.x
128.
128. M. Pourbaix, Biomaterials 5, 122 (1984).
http://dx.doi.org/10.1016/0142-9612(84)90046-2
129.
129. G. Flint, S. Carter, and B. Fairman, Contact Dermatitis 39, 315 (1998).
http://dx.doi.org/10.1111/j.1600-0536.1998.tb05951.x
130.
130. M. G. Shettlemore and K. J. Bundy, Biomaterials 22, 2215 (2001).
http://dx.doi.org/10.1016/S0142-9612(00)00410-5
131.
131. K. Merritt and S. A. Brown, J. Biomed. Mater. Res. 29, 627 (1995).
http://dx.doi.org/10.1002/jbm.820290510
132.
132. S. A. Brown, L. J. Farnsworth, K. Merritt, and T. D. Crowe, J. Biomed. Mater. Res. 22, 321 (1988).
http://dx.doi.org/10.1002/jbm.820220406
133.
133. P. M. May, Appl. Geochem. 55, 3 (2015).
http://dx.doi.org/10.1016/j.apgeochem.2014.11.023
134.
134. Y. S. Hedberg, N. Mazinanian, and I. Odnevall Wallinder, “ Compliance tests of stainless steel as a food contact material using the CoE test guideline,” 2014, http://www.euro-inox.org/pdf/health/KTH_report_EN.pdf.
135.
135. G. Herting, I. Odnevall Wallinder, and C. Leygraf, J. Electrochem. Soc. 152, B23 (2005).
http://dx.doi.org/10.1149/1.1834901
136.
136. B. Erfani, C. Lidén, and K. Midander, Contact Dermatitis 73(4), 222230 (2015).
http://dx.doi.org/10.1111/cod.12426
137.
137. M. Assad, N. Lemieux, C. Rivard, and L. Yahia, Bio-Med. Mater. Eng. 9, 1 (1999).
138.
138. G. Herting, I. Odnevall Wallinder, and C. Leygraf, J. Environ. Monit. 10, 1092 (2008).
http://dx.doi.org/10.1039/b805075a
139.
139. P. Haudrechy, J. Foussereau, B. Mantout, and B. Baroux, Corros. Sci. 35, 329 (1993).
http://dx.doi.org/10.1016/0010-938X(93)90164-C
140.
140. T. Suter and H. Böhni, Electrochim. Acta 43, 2843 (1998).
http://dx.doi.org/10.1016/S0013-4686(98)00025-5
141.
141. E. Bettini, U. Kivisäkk, C. Leygraf, and J. Pan, Int. J. Electrochem. Sci. 9, 61 (2014).
142.
142. G. Herting, I. Odnevall Wallinder, and C. Leygraf, Corros. Sci. 49, 103 (2007).
http://dx.doi.org/10.1016/j.corsci.2006.05.008
143.
143. L. Reclaru, R. Ziegenhagen, P. Y. Eschler, A. Blatter, and J. Lemaître, Acta Biomater. 2, 433 (2006).
http://dx.doi.org/10.1016/j.actbio.2006.03.004
144.
144. A. Chiba, S. Sakakura, K. Kobayashi, and K. Kusayanagi, J. Mater. Sci. 32, 1995 (1997).
http://dx.doi.org/10.1023/A:1018546016021
145.
145. P. Haudrechy, B. Mantout, A. Frappaz, D. Rousseau, G. Chabeau, M. Faure, and A. Claudy, Contact Dermatitis 37, 113 (1997).
http://dx.doi.org/10.1111/j.1600-0536.1997.tb00314.x
146.
146. Y. Hedberg, O. Karlsson, P. Szakalos, and I. Odnevall Wallinder, Mater. Lett. 65, 2089 (2011).
http://dx.doi.org/10.1016/j.matlet.2011.04.019
147.
147. Y. Hedberg, M. Norell, J. Hedberg, P. Szakálos, P. Linhardt, and I. Odnevall Wallinder, Powder Metall. 56, 158 (2013).
http://dx.doi.org/10.1179/1743290112Y.0000000041
148.
148. Y. Hedberg, S. Virtanen, and I. Odnevall Wallinder, Int. J. Electrochem. Sci. 7, 11678 (2012).
149.
149. T. Kelly, M. Cohen, and J. van der Sande, Metall. Mater. Trans. A 15, 819 (1984).
http://dx.doi.org/10.1007/BF02644556
150.
150. T. Volkmann, D. Herlach, and W. Löser, Metall. Mater. Trans. A 28, 461 (1997).
http://dx.doi.org/10.1007/s11661-997-0147-x
151.
151. W. Löser and D. Herlach, Metall. Mater. Trans. A 23, 1585 (1992).
http://dx.doi.org/10.1007/BF02647340
152.
152. W. Löser, T. Volkmann, and D. M. Herlach, Mater. Sci. Eng. A 178, 163 (1994).
http://dx.doi.org/10.1016/0921-5093(94)90536-3
153.
153. T. Tunberg and L. Nyborg, Powder Metall. 38, 120 (1995).
http://dx.doi.org/10.1179/pom.1995.38.2.120
154.
154. L. Nyborg and I. Olefjord, Key Eng. Mater. 29–31, 9 (1991).
http://dx.doi.org/10.4028/www.scientific.net/KEM.29-31.9
155.
155. J. Antonini, J. Roberts, S. Stone, B. Chen, D. Schwegler-Berry, R. Chapman, P. Zeidler-Erdely, R. Andrews, and D. Frazer, Arch. Toxicol. 85, 487 (2011).
http://dx.doi.org/10.1007/s00204-010-0601-1
156.
156. K.-T. Oh and K.-N. Kim, Eur. J. Orthod. 27, 533 (2005).
http://dx.doi.org/10.1093/ejo/cji047
157.
157. L. Reclaru, H. Lüthy, R. Ziegenhagen, P.-Y. Eschler, and A. Blatter, Acta Biomater. 4, 680 (2008).
http://dx.doi.org/10.1016/j.actbio.2007.10.008
158.
158. G. Herting, I. Odnevall Wallinder, and C. Leygraf, Corros. Sci. 48, 2120 (2006).
http://dx.doi.org/10.1016/j.corsci.2005.08.006
159.
159. G. Herting, I. Odnevall Wallinder, and C. Leygraf, J. Food Eng. 87, 291 (2008).
http://dx.doi.org/10.1016/j.jfoodeng.2007.12.006
160.
160. J. Galván, L. Saldaña, M. Multigner, A. Calzado-Martín, M. Larrea, C. Serra, N. Vilaboa, and J. González-Carrasco, J. Mater. Sci. Mater. Med. 23, 657 (2012).
http://dx.doi.org/10.1007/s10856-012-4549-y
161.
161. G. Flint and S. Packirisamy, Food Addit. Contam. 14, 115 (1997).
http://dx.doi.org/10.1080/02652039709374506
162.
162. M. Cieslik, W. Reczynski, A. M. Janus, K. Engvall, R. P. Socha, and A. Kotarba, Corros. Sci. 51, 1157 (2009).
http://dx.doi.org/10.1016/j.corsci.2009.02.012
163.
163. S. Mueller, H. D. Riedel, and W. Stremmel, Anal. Biochem. 245, 55 (1997).
http://dx.doi.org/10.1006/abio.1996.9939
164.
164.CEN, Reference Test Method for Release of Nickel From All Post Assemblies Which Are Inserted Into Pierced Parts of the Human Body and Articles Intended to Come Into Direct and Prolonged Contact with the Skin ( European Committee for Standardization, Brussels, Belgium, 2011).
165.
165. C. Lidén, L. Skare, and M. Vahter, Contact Dermatitis 59, 31 (2008).
http://dx.doi.org/10.1111/j.1600-0536.2008.01363.x
166.
166. A. Julander, K. Midander, G. Herting, J. P. Thyssen, I. R. White, I. Odnevall Wallinder, and C. Lidén, Contact Dermatitis 68, 323 (2013).
http://dx.doi.org/10.1111/cod.12092
167.
167. J. P. Thyssen, D. J. Gawkrodger, I. R. White, A. Julander, T. Menné, and C. Lidén, Contact Dermatitis 68, 3 (2013).
http://dx.doi.org/10.1111/j.1600-0536.2012.02127.x
168.
168. M. S. Jellesen, A. A. Rasmussen, and L. R. Hilbert, Mater. Corros. 57, 387 (2006).
http://dx.doi.org/10.1002/maco.200503953
169.
169. S. Durmoo, C. Richard, G. Beranger, and Y. Moutia, Electrochim. Acta 54, 74 (2008).
http://dx.doi.org/10.1016/j.electacta.2008.06.028
170.
170. J. Kuligowski and K. M. Halperin, Arch. Environ. Contam. Toxicol. 23, 211 (1992).
http://dx.doi.org/10.1007/BF00212277
171.
171. P. Agarwal, S. Srivastava, M. M. Srivastava, S. Prakash, M. Ramanamurthy, R. Shrivastav, and S. Dass, Sci. Total Environ. 199, 271 (1997).
http://dx.doi.org/10.1016/S0048-9697(97)05455-7
172.
172. R. Kumar, P. Srivastava, and S. Srivastava, Bull. Environ. Contam. Toxicol. 53, 259 (1994).
http://dx.doi.org/10.1007/bf00192042
173.
173. R. Brun, Contact Dermatitis 5, 43 (1979).
http://dx.doi.org/10.1111/j.1600-0536.1979.tb05534.x
174.
174. T. Berg, A. Petersen, G. A. Pedersen, J. Petersen, and C. Madsen, Food Addit. Contam. 17, 189 (2000).
http://dx.doi.org/10.1080/026520300283441
175.
175. O. B. Christensen and H. Möller, Contact Dermatitis 4, 343 (1978).
http://dx.doi.org/10.1111/j.1600-0536.1978.tb03847.x
176.
176. E. G. Offenbacher and F. X. Pi-Sunyer, J. Agric. Food Chem. 31, 89 (1983).
http://dx.doi.org/10.1021/jf00115a024
177.
177. K. L. Kamerud, K. A. Hobbie, and K. A. Anderson, J. Agric. Food Chem. 61, 9495 (2013).
http://dx.doi.org/10.1021/jf402400v
178.
178. Y. Okazaki and E. Gotoh, Biomaterials 26, 11 (2005).
http://dx.doi.org/10.1016/j.biomaterials.2004.02.005
179.
179. M. Accominotti et al., Contact Dermatitis 38, 305 (1998).
http://dx.doi.org/10.1111/j.1600-0536.1998.tb05763.x
180.
180. Y. Okazaki and E. Gotoh, Corros. Sci. 50, 3429 (2008).
http://dx.doi.org/10.1016/j.corsci.2008.09.002
181.
181. S. Karimi and A. M. Alfantazi, Mater. Sci. Eng. C 40, 435 (2014).
http://dx.doi.org/10.1016/j.msec.2014.04.007
182.
182. K. Midander, J. Pan, and C. Leygraf, Corros. Sci. 48, 2855 (2006).
http://dx.doi.org/10.1016/j.corsci.2005.10.005
183.
183. T. Eliades, H. Pratsinis, D. Kletsas, G. Eliades, and M. Makou, Am. J. Orthod. Dentofacial 125, 24 (2004).
http://dx.doi.org/10.1016/j.ajodo.2003.09.009
184.
184. H. Kerosuo, G. Moe, and E. Kleven, Angle Orthod. 65, 111 (1995).
185.
185. B. Summer, U. Fink, R. Zeller, F. Rueff, S. Maier, G. Roider, and P. Thomas, Contact Dermatitis 57, 35 (2007).
http://dx.doi.org/10.1111/j.1600-0536.2007.01139.x
186.
186. W. E. Hillwalker and K. A. Anderson, Environ. Pollut. 185, 52 (2014).
http://dx.doi.org/10.1016/j.envpol.2013.10.006
187.
187. C. S. Jensen, S. Lisby, O. Baadsgaard, K. Byrialsen, and T. Menné, Contact Dermatitis 48, 300 (2003).
http://dx.doi.org/10.1034/j.1600-0536.2003.00118.x
188.
188. M. F. Sfondrini, V. Cacciafesta, E. Maffia, A. Scribante, G. Alberti, R. Biesuz, and C. Klersy, Am. J. Orthod. Dentofacial 137, 809 (2010).
http://dx.doi.org/10.1016/j.ajodo.2008.07.021
189.
189. M. F. Sfondrini, V. Cacciafesta, E. Maffia, S. Massironi, A. Scribante, G. Alberti, R. Biesuz, and C. Klersy, Angle Orthod. 79, 361 (2009).
http://dx.doi.org/10.2319/042108-223.1
190.
190. G. Hultquist, C. Leygraf, and D. Brune, J. Electrochem. Soc. 131, 1773 (1984).
http://dx.doi.org/10.1149/1.2115958
191.
191. R. D. Barrett, S. E. Bishara, and J. K. Quinn, Am. J. Orthod. Dentofacial 103, 8 (1993).
http://dx.doi.org/10.1016/0889-5406(93)70098-9
192.
192. K. Midander, J. Pan, I. Odnevall Wallinder, and C. Leygraf, J. Environ. Monit. 9, 74 (2007).
http://dx.doi.org/10.1039/B613919A
193.
193. T. Hanawa, Mater. Sci. Eng. C 24, 745 (2004).
http://dx.doi.org/10.1016/j.msec.2004.08.018
194.
194. Y. Okazaki, E. Gotoh, T. Manabe, and K. Kobayashi, Biomaterials 25, 5913 (2004).
http://dx.doi.org/10.1016/j.biomaterials.2004.01.064
195.
195. A. J. Hart, P. D. Quinn, B. Sampson, A. Sandison, K. D. Atkinson, J. A. Skinner, J. J. Powell, and J. F. W. Mosselmans, Acta Biomater. 6, 4439 (2010).
http://dx.doi.org/10.1016/j.actbio.2010.06.006
196.
196. H. S. Gill, G. Grammatopoulos, S. Adshead, E. Tsialogiannis, and E. Tsiridis, Trends Mol. Med. 18, 145 (2012).
http://dx.doi.org/10.1016/j.molmed.2011.12.002
197.
197. G. M. Keegan, I. D. Learmonth, and C. Case, Crit. Rev. Toxicol. 38, 645 (2008).
http://dx.doi.org/10.1080/10408440701845534
198.
198. D. Cadosch, E. Chan, O. P. Gautschi, H.-P. Simmen, and L. Filgueira, J. Orthop. Res. 27, 841 (2009).
http://dx.doi.org/10.1002/jor.20831
199.
199. M. Díaz, P. Sevilla, A. Galán, G. Escolar, E. Engel, and F. Gil, J. Biomed. Mater. Res. B 87, 555 (2008).
http://dx.doi.org/10.1002/jbm.b.31144
200.
200. R. Köster, D. Vieluf, M. Kiehn, M. Sommerauer, J. Kähler, S. Baldus, T. Meinertz, and C. W. Hamm, Lancet 356, 1895 (2000).
http://dx.doi.org/10.1016/S0140-6736(00)03262-1
201.
201. B. Svensson, V. Englander, B. Åkesson, R. Attewell, S. Skerfving, Å. Ericson, and T. Möller, Am. J. Ind. Med. 15, 51 (1989).
http://dx.doi.org/10.1002/ajim.4700150107
202.
202. I. C. Stridsklev, K. H. Schaller, and S. Langård, Int. Arch. Occup. Environ. Health 80, 450 (2007).
http://dx.doi.org/10.1007/s00420-006-0142-3
203.
203. M. Huvinen et al., Mutagenesis 17, 425 (2002).
http://dx.doi.org/10.1093/mutage/17.5.425
204.
204. J. J. Moulin, P. Wild, B. Mantout, M. Fournier-Betz, J. M. Mur, and G. Smagghe, Cancer Cause Control 4, 75 (1993).
http://dx.doi.org/10.1007/BF00053147
205.
205. J. J. Moulin, T. Clavel, D. Roy, B. Dananché, N. Marquis, J. Févotte, and J. M. Fontana, Int. Arch. Occup. Environ. Health 73, 171 (2000).
http://dx.doi.org/10.1007/s004200050024
206.
206. K. Jakobsson, Z. Mikoczy, and S. Skerfving, Occup. Environ. Med. 54, 825 (1997).
http://dx.doi.org/10.1136/oem.54.11.825
207.
207. M. Huvinen, J. Uitti, P. Oksa, P. Palmroos, and P. Laippala, Occup. Med. 52, 203 (2002).
http://dx.doi.org/10.1093/occmed/52.4.203
208.
208. M. Huvinen, J. Uitti, A. Zitting, P. Roto, K. Virkola, P. Kuikka, P. Laippala, and A. Aitio, Occup. Environ. Med. 53, 741 (1996).
http://dx.doi.org/10.1136/oem.53.11.741
209.
209. G. Ağaoğlu, T. Arun, B. İzgü, and A. Yarat, Angle Orthod. 71, 375 (2001).
210.
210. S. E. Bishara, R. D. Barrett, and M. I. Selim, Am. J. Orthod. Dentofacial 103, 115 (1993).
http://dx.doi.org/10.1016/S0889-5406(05)81760-3
211.
211. F. Faccioni, P. Franceschetti, M. Cerpelloni, and M. E. Fracasso, Am. J. Orthod. Dentofacial 124, 687 (2003).
http://dx.doi.org/10.1016/j.ajodo.2003.09.010
212.
212. J. Walczak, F. Shahgaldi, and F. Heatley, Biomaterials 19, 229 (1998).
http://dx.doi.org/10.1016/S0142-9612(97)00208-1
213.
213. D. Bregnbak, J. D. Johansen, M. S. Jellesen, C. Zachariae, T. Menné, and J. P. Thyssen, Contact Dermatitis 73, 261 (2015).
http://dx.doi.org/10.1111/cod.12436
214.
214. J. P. Thyssen, W. Uter, J. McFadden, T. Menné, R. Spiewak, M. Vigan, A. Gimenez-Arnau, and C. Lidén, Contact Dermatitis 64, 121 (2011).
http://dx.doi.org/10.1111/j.1600-0536.2010.01852.x
215.
215. L. A. Fischer, J. D. Johansen, and T. Menné, Br. J. Dermatol. 157, 723 (2007).
http://dx.doi.org/10.1111/j.1365-2133.2007.08095.x
216.
216. G. Burstein and C. Liu, Corros. Sci. 49, 4296 (2007).
http://dx.doi.org/10.1016/j.corsci.2007.05.018
http://aip.metastore.ingenta.com/content/avs/journal/bip/11/1/10.1116/1.4934628
Loading
/content/avs/journal/bip/11/1/10.1116/1.4934628
Loading

Data & Media loading...

Abstract

Due to its beneficial corrosion resistance, stainless steel is widely used in, e.g., biomedical applications, as surfaces in food contact, and for products intended to come into skin contact. Low levels of metals can be released from the stainless steel surface into solution, even for these highly corrosion resistant alloys. This needs to be considered in risk assessment and management. This review aims to compile the different metal release mechanisms that are relevant for stainless steel when used in different biological settings. These mechanisms include corrosion-induced metal release, dissolution of the surface oxide, friction-induced metal release, and their combinations. The influence of important physicochemical surface properties, different organic species and proteins in solution, and of biofilm formation on corrosion-induced metal release is discussed. Chemical and electrochemical dissolution mechanisms of the surface oxides of stainless steel are presented with a focus on protonation, complexation/ligand-induced dissolution, and reductive dissolution by applying a perspective on surface adsorption of complexing or reducing ligands and proteins. The influence of alloy composition, microstructure, route of manufacture, and surface finish on the metal release process is furthermore discussed as well as the chemical speciation of released metals. Typical metal release patterns are summarized.

Loading

Full text loading...

/deliver/fulltext/avs/journal/bip/11/1/1.4934628.html;jsessionid=3xpMQlhHxAvqi3xU1bT4uNgn.x-aip-live-06?itemId=/content/avs/journal/bip/11/1/10.1116/1.4934628&mimeType=html&fmt=ahah&containerItemId=content/avs/journal/bip
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=avspublications.org/11/1/10.1116/1.4934628&pageURL=http://scitation.aip.org/content/avs/journal/bip/11/1/10.1116/1.4934628'
Right1,Right2,Right3,