Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/avs/journal/bip/11/1/10.1116/1.4939244
1.
1. S. Balamurugan, L. K. Ista, J. Yan, G. P. Lopez, J. Fick, M. Himmelhaus, and M. Grunze, J. Am. Chem. Soc. 127, 14548 (2005).
http://dx.doi.org/10.1021/ja054156g
2.
2. I. Banerjee, R. C. Pangule, and R. S. Kane, Adv. Mater. 23, 690 (2011).
http://dx.doi.org/10.1002/adma.201001215
3.
3. J. D. Brooks and S. H. Flint, Int. J. Food Sci. Technol. 43, 2163 (2008).
http://dx.doi.org/10.1111/j.1365-2621.2008.01839.x
4.
4. J. D. Bryers, Biotechnol. Bioeng. 100, 1 (2008).
http://dx.doi.org/10.1002/bit.21838
5.
5. L. K. Ista, H. Fan, O. Baca, and G. P. López, FEMS Microbiol. Lett. 142, 59 (1996).
http://dx.doi.org/10.1111/j.1574-6968.1996.tb08408.x
6.
6. L. K. Ista and G. P. Lopez, Langmuir 28, 12844 (2012).
http://dx.doi.org/10.1021/la302601x
7.
7. L. K. Ista and G. P. Lopez, Biointerphases 8, 24 (2013).
http://dx.doi.org/10.1186/1559-4106-8-24
8.
8. L. K. Ista, S. Mendez, S. S. Balamurugan, S. Balamurugan, G. V. R. Rao, and G. P. Lopez, ACS Symp. Ser. 1002, 95 (2009).
http://dx.doi.org/10.1021/bk-2009-1002
9.
9. L. K. Ista, S. Mendez, and G. P. Lopez, Biofouling 26, 111 (2010).
http://dx.doi.org/10.1080/08927010903383455
10.
10. K. Artyushkova, J. A. Cornejo, L. K. Ista, S. Babanova, C. Santoro, P. Atanassov, and A. J. Schuler, Biointerphases 10, 019013 (2015).
http://dx.doi.org/10.1116/1.4913783
11.
11. P. K. Sharma and K. H. Rao, Adv. Colloid Interface 98, 341 (2002).
http://dx.doi.org/10.1016/S0001-8686(02)00004-0
12.
12. C. J. van Oss, J. Adhes. Sci. Technol. 16, 669 (2002).
http://dx.doi.org/10.1163/156856102760099870
13.
13. C. J. van Oss, Interfacial Forces in Aqueous Media, 2nd ed. ( Taylor and Francis, Boca Raton, FL, 2006).
14.
14. C. L. Kirkpatrick and P. H. Viollier, Chem. Biol. 21, 657 (2014).
http://dx.doi.org/10.1016/j.chembiol.2014.02.018
15.
15. G. R. Bowman, A. I. Lyuksyutova, and L. Shapiro, Curr. Opin. Cell Biol. 23, 71 (2011).
http://dx.doi.org/10.1016/j.ceb.2010.10.013
16.
16. G. C. L. Wong and G. A. O'Toole, MRS Bull. 36, 339 (2011).
http://dx.doi.org/10.1557/mrs.2011.64
17.
17. E. Mileykovskaya and W. Dowhan, Biochim. Biophys. Acta 1788, 2084 (2009).
http://dx.doi.org/10.1016/j.bbamem.2009.04.003
18.
18. I. Bulyha, C. Schmidt, P. Lenz, V. Jakovljevic, A. Hone, B. Maier, M. Hoppert, and L. Sogaard-Andersen, Mol. Microbiol. 74, 691 (2009).
http://dx.doi.org/10.1111/j.1365-2958.2009.06891.x
19.
19. V. Dupres, D. Alsteens, G. Andre, and Y. F. Dufrene, Trends Microbiol. 18, 397 (2010).
http://dx.doi.org/10.1016/j.tim.2010.06.004
20.
20. S. Sheuring and Y. F. Dufrene, Mol. Microbiol. 75, 1327 (2010).
http://dx.doi.org/10.1111/j.1365-2958.2010.07064.x
21.
21. G. Andre, M. Deghorain, P. A. Bron, I. I. van Swam, M. Kleerebezem, P. Hols, and Y. F. Dufrene, ACS Chem. Biol. 6, 366 (2011).
http://dx.doi.org/10.1021/cb1003509
22.
22. J. Ubbink and P. Schar-Zammaretti, Curr. Opin. Colloid Interface Sci. 12, 263 (2007).
http://dx.doi.org/10.1016/j.cocis.2007.08.004
23.
23. P. Schar-Zammaretti and J. Ubbink, Ultramicroscopy 97, 199 (2003).
http://dx.doi.org/10.1016/S0304-3991(03)00044-5
24.
24. J. Singh and J. Whitten, J. Macromol. Sci. A 45, 884 (2008).
http://dx.doi.org/10.1080/10601320802378186
25.
25. J. Wang and H.-J. Butt, J. Phys. Chem. B 112, 2001 (2008).
http://dx.doi.org/10.1021/jp0760612
26.
26. N. E. Lonergan, L. D. Britt, and C. J. Sullivan, Ultramicroscopy 137, 30 (2014).
http://dx.doi.org/10.1016/j.ultramic.2013.10.017
27.
27. Y. Liu, A. M. Gallardo-Moreno, P. A. Pinzon-Arango, Y. Reynolds, G. Rodriguez, and T. A. Camesano, Colloid Surf. B 65, 35 (2008).
http://dx.doi.org/10.1016/j.colsurfb.2008.02.012
28.
28. Y. T. Liu, J. Strauss, and T. A. Camesano, Langmuir 23, 7134 (2007).
http://dx.doi.org/10.1021/la700575u
29.
29. K. Saha, S. S. Agasti, C. Kim, X. Li, and V. M. Rotello, Chem. Rev. 112, 2739 (2012).
http://dx.doi.org/10.1021/cr2001178
30.
30. D. A. Giljohann, D. S. Seferos, W. L. Daniel, M. D. Massich, P. C. Patel, and C. A. Mirkin, Angew. Chem. Int. Ed. Engl. 49, 3280 (2010).
http://dx.doi.org/10.1002/anie.200904359
31.
31. G. Hwang, I. S. Ahn, B. J. Mhin, and J. Y. Kim, Colloids Surf. B Biointerfaces 97, 138 (2012).
http://dx.doi.org/10.1016/j.colsurfb.2012.04.031
32.
32. R. L. Phillips, O. R. Miranda, C.-C. You, V. M. Rotello, and U. H. Bunz, Angew. Chem. Int. Ed. Engl. 47, 2590 (2008).
http://dx.doi.org/10.1002/anie.200703369
33.
33. J. Luo, W. B. Chan, L. Wang, and C. J. Zhong, Int. J. Antimicrobiol. Agents 36, 549 (2010).
http://dx.doi.org/10.1016/j.ijantimicag.2010.08.015
34.
34. C. Sousa, D. Sequeira, Y. Kolen'ko, I. Mendes Pinto, and D. Y. Petroovykh, Anal. Chem. 87, 4641 (2015).
http://dx.doi.org/10.1021/ac503835a
35.
35. K. H. Nealson and S. E. Finkel, MRS Bull. 36, 380 (2011).
http://dx.doi.org/10.1557/mrs.2011.69
36.
36. R. A. Bouhenni et al., Electroanalysis 22, 856 (2010).
http://dx.doi.org/10.1002/elan.200880006
37.
37. Y. A. Gorby et al., Proc. Natl. Acad. Sci. U. S. A. 103, 11358 (2006).
http://dx.doi.org/10.1073/pnas.0604517103
38.
38. J. Roy et al., RSC Adv. 2, 10020 (2012).
http://dx.doi.org/10.1039/c2ra21727a
39.
39. D. E. Northup et al., Astrobiology 11, 601 (2011).
http://dx.doi.org/10.1089/ast.2010.0562
40.
40. D. Greif, D. Wesner, J. Regtmeier, and D. Anselmetti, Ultramicroscopy 110, 1290 (2010).
http://dx.doi.org/10.1016/j.ultramic.2010.06.004
41.
41. M. Derde, F. Nau, V. Lechevalier, C. Guerin-Dubiard, G. Paboeuf, S. Jan, F. Baron, M. Gautier, and V. Vie, BBA-Biomembr. 1848, 174 (2015).
http://dx.doi.org/10.1016/j.bbamem.2014.10.026
42.
42.See supplementary material at http://dx.doi.org/10.1116/1.4939244 for additional explanations of calculations, raw data, statistical analysis and analysis of additional mutants discussed in the manuscript.[Supplementary Material]
43.
43. C. A. Schneider, W. S. Rasband, and K. W. Eliceiri, Nat. Methods 9, 671 (2012).
http://dx.doi.org/10.1038/nmeth.2089
44.
44. M. M. T. Khan, L. K. Ista, G. P. Lopez, and A. J. Schuler, Environ. Sci. Technol. 45, 1055 (2011).
http://dx.doi.org/10.1021/es101389u
45.
45. M. S. Strom, D. N. Nunn, and S. Lory, Proc. Natl. Acad. Sci. U. S. A. 90, 2404 (1993).
http://dx.doi.org/10.1073/pnas.90.6.2404
46.
46. J. Haiko and B. Westerlund-Wikstrom, Biology 2, 1242 (2013).
http://dx.doi.org/10.3390/biology2041242
47.
47. C. L. Giltner, Y. Nguyen, and L. L. Burrows, Microbiol. Mol. Biol. R 76, 740 (2012).
http://dx.doi.org/10.1128/MMBR.00035-12
48.
48. R. M. Saville, N. Dieckmann, and A. M. Spormann, FEMS Microbiol. Lett. 308, 76 (2010).
http://dx.doi.org/10.1111/j.1574-6968.2010.01995.x
49.
49. J. F. Heidelberg et al., Nat. Biotechnol. 20, 1118 (2002).
http://dx.doi.org/10.1038/nbt749
50.
50. E. C. Howard, E. R. Petersen, L. A. Fitzgerald, P. E. Sheehan, and B. R. Ringeisen, J. Microbiol. Methods 87, 320 (2011).
http://dx.doi.org/10.1016/j.mimet.2011.09.008
51.
51. S. Pirbadian et al., Proc. Natl. Acad. Sci. U. S. A. 111, 12883 (2014).
http://dx.doi.org/10.1073/pnas.1410551111
52.
52. J. E. Evans, K. L. Jungjohann, P. C. Wong, P. L. Chiu, G. H. Dutrow, I. Arslan, and N. D. Browning, Micron 43, 1085 (2012).
http://dx.doi.org/10.1016/j.micron.2012.01.018
http://aip.metastore.ingenta.com/content/avs/journal/bip/11/1/10.1116/1.4939244
Loading
/content/avs/journal/bip/11/1/10.1116/1.4939244
Loading

Data & Media loading...

Abstract

The bacterial cell envelope forms the interface between the interior of the cell and the outer world and is, thus, the means of communication with the environment. In particular, the outer cellsurface mediates the adhesion of bacteria to the surface, the first step in biofilm formation. While a number of ligand-based interactions are known for the attachment process in commensal organisms and, as a result, opportunistic pathogens, the process of nonspecific attachment is thought to be mediated by colloidal, physiochemical, interactions. It is becoming clear, however, that colloidal models ignore the heterogeneity of the bacterial surface, and that the so-called nonspecific attachment may be mediated by specific regions of the cellsurface, whether or not the relevant interaction is ligand-mediate. The authors introduce surface functionalized goldnanoparticles to probe the surface chemistry of MR-1 as it relates to surface attachment to ω-substituted alkanethiolates self-assembled monolayers (SAMs). A linear relationship between the attachment of to SAM modified planar substrates and the number of similarly modified nanoparticles attached to the bacterial surfaces was demonstrated. In addition, the authors demonstrate that carboxylic acid-terminated nanoparticles attach preferentially to the subpolar region of the and obliteration of that binding preference corresponds in loss of attachment to carboxylic acid terminated SAMs. Moreover, this region corresponds to suspected functional regions of the surface. Because this method can be employed over large numbers of cells, this method is expected to be generally applicable for understanding cellsurface organization across populations.

Loading

Full text loading...

/deliver/fulltext/avs/journal/bip/11/1/1.4939244.html;jsessionid=ERLCctih6pEf2zqBOF39tJXi.x-aip-live-06?itemId=/content/avs/journal/bip/11/1/10.1116/1.4939244&mimeType=html&fmt=ahah&containerItemId=content/avs/journal/bip
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=avspublications.org/11/1/10.1116/1.4939244&pageURL=http://scitation.aip.org/content/avs/journal/bip/11/1/10.1116/1.4939244'
Right1,Right2,Right3,