Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/avs/journal/bip/11/1/10.1116/1.4941367
1.
1. D. B. Graves, J. Phys. D: Appl. Phys. 45, 263001 (2012).
http://dx.doi.org/10.1088/0022-3727/45/26/263001
2.
2. M. G. Kong, G. Kroesen, G. Morfill, T. Nosenko, T. Shimizu, J. van Dijk, and J. L. Zimmermann, New J. Phys. 11, 115012 (2009).
http://dx.doi.org/10.1088/1367-2630/11/11/115012
3.
3. G. Isbary, T. Shimizu, Y. F. Li, W. Stolz, H. M. Thomas, G. E. Morfill, and J. L. Zimmermann, Expert Rev. Med. Devices. 10, 367 (2013).
http://dx.doi.org/10.1586/erd.13.4
4.
4. J. M. Gallagher, N. Vaze, S. Gangoli, V. N. Vasilets, A. F. Gutsol, T. N. Milovanova, S. Anandan, D. M. Murasko, and A. A. Fridman, IEEE Trans. Plasma Sci. 35, 1501 (2007).
http://dx.doi.org/10.1109/TPS.2007.905209
5.
5. N. D. Vaze, K. P. Arjunan, M. J. Gallagher, V. N. Vasilets, A. Gutsol, A. Fridman, and S. Anandan, “ Air and water sterilization using non-thermal plasma,” in IEEE 34th International Conference on Plasma Science, ICOPS 2007 (2007), p. 747.
6.
6. N. Vaze, S. Park, G. Fridman, and A. Fridman, “ Direct exposure to a single filament of DBD plasma leads to the inactivation of airborne bacteria,” in 2010 Abstracts IEEE International Conference on Plasma Science (2010), p. 1.
7.
7. Y. Liang, et al., Environ. Sci. Technol. 46, 3360 (2012).
http://dx.doi.org/10.1021/es203770q
8.
8. P. E. Hockberger, J. Photochem. Photobiol. 76, 561 (2002).
http://dx.doi.org/10.1562/0031-8655(2002)076<0561:AHOUPF>2.0.CO;2
9.
9. A. Davies, T. Pottage, A. Bennett, and J. Walker, J. Hosp. Infect. 77, 199 (2011).
http://dx.doi.org/10.1016/j.jhin.2010.08.012
10.
10. S. Aiba and A. Yamamoto, Biotechnol. Bioeng. 1, 129 (1959).
http://dx.doi.org/10.1002/jbmte.390010202
11.
11. U. S. Roy, J. Gendron, M. C. Delhoménie, L. Bibeau, M. Heitz, and R. Brzezinski, Appl. Microbiol. Biotechnol. 61, 366 (2003).
http://dx.doi.org/10.1007/s00253-003-1228-4
12.
12. Y. Paz, Appl. Catal. B 99, 448 (2010).
http://dx.doi.org/10.1016/j.apcatb.2010.05.011
13.
13. J. Peral, X. Domènech, and D. F. Ollis, J. Chem. Technol. Biotechnol. 70, 117 (1997).
http://dx.doi.org/10.1002/(SICI)1097-4660(199710)70:2<117::AID-JCTB746>3.0.CO;2-F
14.
14. E. Bermudez, J. B. Mangum, B. A. Wong, B. Asqharian, P. M. Hext, D. B. Warheit, and J. I. Everitt, Toxicol. Sci. 77, 347 (2004).
http://dx.doi.org/10.1093/toxsci/kfh019
15.
15. S. H. Sharma, Nanomedicine 2, 753 (2007).
http://dx.doi.org/10.2217/17435889.2.6.753
16.
16. E. Levetin, R. Shaughnessy, C. A. Rogers, and R. Scheir, Appl. Environ. Microbiol. 67, 3712 (2001).
http://dx.doi.org/10.1128/AEM.67.8.3712-3715.2001
17.
17. M. Vleugels, G. Shama, X. T. Deng, E. Greenacre, T. Brocklehurst, and M. G. Kong, IEEE Trans. Plasma Sci. 33, 824 (2005).
http://dx.doi.org/10.1109/TPS.2005.844524
18.
18. E. Kujundzic, D. A. Zander, M. Hernandez, L. T. Angenent, D. E. Henderson, and S. L. Miller, J. Air Waste Manag. Assoc. 55, 210 (2005).
http://dx.doi.org/10.1080/10473289.2005.10464612
19.
19. A. Pal, S. O. Pehkonen, L. E. Yu, and M. B. Ray, Ind. Eng. Chem. Res. 47, 7580 (2008).
http://dx.doi.org/10.1021/ie701739g
20.
20. A. Pal, X. Min, L. E. Yu, S. O. Pehkonen, and M. B. Ray, Int. J. Chem. Reactor Eng. 3, 1 (2005).
http://dx.doi.org/10.2202/1542-6580.1236
21.
21. A. Pal, S. O. Pehkonen, L. E. Yu, and M. B. Ray, J. Photochem. Photobiol. A 186, 335 (2007).
http://dx.doi.org/10.1016/j.jphotochem.2006.09.002
22.
22. W. J. Kowalski, W. P. Bahnfleth, and T. S. Whittam, Ozone Sci. Eng. 20, 205 (1998).
http://dx.doi.org/10.1080/01919519808547272
23.
23. K. G. Tirsell and V. P. A. Karpenko, Nucl. Instrum. Methods Phys. Res., Sect. A 291, 511 (1990).
http://dx.doi.org/10.1016/0168-9002(90)90113-K
24.
24. R. Vyhnalkova, A. Eisenberg, and T. G. M. van de Ven, Langmuir 27, 11296 (2011).
http://dx.doi.org/10.1021/la201112j
25.
25. J. Ren, W. Z. Wang, L. Zhang, J. Chang, and S. Hu, Catal. Commun. 10, 1940 (2009).
http://dx.doi.org/10.1016/j.catcom.2009.07.006
26.
26. H. M. Al-Qadiri, M. A. Al-Holy, M. Lin, N. I. Alami, A. G. Cavinato, and B. A. Rasco, J. Agric. Food Chem. 54, 5749 (2006).
http://dx.doi.org/10.1021/jf0609734
27.
27. J. Schmitt and H. C. Flemming, Int. Biodeterior. Biodegrad. 41, 1 (1998).
http://dx.doi.org/10.1016/S0964-8305(98)80002-4
28.
28. M. Kansiz, P. Heraud, B. Wood, F. Burden, J. Beardall, and D. McNaughton, Phytochemistry 52, 407 (1999).
http://dx.doi.org/10.1016/S0031-9422(99)00212-5
29.
29. L. P. Choo-Smith et al., Appl. Environ. Microbiol. 67, 1461 (2001).
http://dx.doi.org/10.1128/AEM.67.4.1461-1469.2001
30.
30. M. Lin, M. A. Al-Holy, A. Al-Qadiri, D.-H. Kang, A. G. Cavinato, Y. Huang, and B. A. Rasco, J. Agric. Food. Chem. 52, 5769 (2004).
http://dx.doi.org/10.1021/jf049354q
31.
31. J. J. Ojeda, M. E. Romero-Gonzalez, R. T. Bachmann, R. G. J. Edyvean, and S. A. Banwart, Langmuir 24, 4032 (2008).
http://dx.doi.org/10.1021/la702284b
32.
32. B. D. Mistry, A Handbook of Spectroscopic Data Chemistry ( Oxford Book Company, Jaipur, India, 2009).
33.
33. G. Karakus, A. F. Yenidunya, H. B. Zengin, E. Malatyal, and S. Özçelik, Med. Chem. 1, 1000103 (2011).
http://dx.doi.org/10.4172/2161-0444.1000103
34.
34. J. Pal, H. Singh, and A. K. Ghosh, J. Appl. Polym. Sci. 92, 102 (2004).
http://dx.doi.org/10.1002/app.13660
35.
35. G. Vedantham, H. G. Sparks, S. U. Sane, S. Tzannis, and T. M. A. Przybycien, Anal. Biochem. 285, 33 (2000).
http://dx.doi.org/10.1006/abio.2000.4744
36.
36. J. Kiwi and V. Nadtochenko, Langmuir 21, 4631 (2005).
http://dx.doi.org/10.1021/la046983l
37.
37. A. R. Badireddy, B. R. Korpol, S. Chellam, P. L. Gassman, M. H. Engelhard, A. S. Lea, and K. M. Rosso, Biomacromolecules 9, 3079 (2008).
http://dx.doi.org/10.1021/bm800600p
38.
38. V. Guine, L. Spadini, G. Sarret, M. Muris, C. Delolme, J. P. Gaudet, and J. M. F. Martins, Environ. Sci. Technol. 40, 1806 (2006).
http://dx.doi.org/10.1021/es050981l
39.
39. W. Jiang, A. Saxena, B. Song, B. B. Ward, T. J. Beveridge, and S. C. B. Myneni, Langmuir 20, 11433 (2004).
http://dx.doi.org/10.1021/la049043+
40.
40. J. Stewart-Ornstein, A. P. Hitchcock, D. H. Cruz, P. Henklein, J. Overhage, K. Hilpert, J. D. Hale, and R. E. W. Hancock, J. Phys. Chem. B 111, 7691 (2007).
http://dx.doi.org/10.1021/jp0720993
41.
41. S. G. Urquhart and H. Ade, J. Phys. Chem. B 106, 8531 (2002).
http://dx.doi.org/10.1021/jp0255379
42.
42. M. L. Gordon, G. Cooper, C. Morin, T. Araki, C. C. Turci, K. Kaznatcheev, and A. P. Hitchcock, J. Phys. Chem. A 107, 6144 (2003).
http://dx.doi.org/10.1021/jp0344390
43.
43. D. Solomon, J. Lehmann, J. Kinyangi, B. Liang, and T. Schafer, Soil Sci. Soc. Am. J. 69, 107 (2005).
http://dx.doi.org/10.2136/sssaj2005.0107dup
44.
44. K. Kaznacheyev, A. Osanna, C. Jacobsen, O. Plashkevych, O. Vahtras, H. Agren, V. Carravetta, and A. P. Hitchcock, J. Phys. Chem. A 106, 3153 (2002).
http://dx.doi.org/10.1021/jp013385w
45.
45. D. A. Outka, J. Stohr, R. J. Madix, H. H. Rotermund, B. Hermsmeier, and J. Solomon, Surf. Sci. 185, 53 (1987).
http://dx.doi.org/10.1016/S0039-6028(87)80613-1
46.
46. F. Sette, J. Stohr, and P. A. Hitchcock, J. Chem. Phys. 81, 4906 (1984).
http://dx.doi.org/10.1063/1.447528
47.
47. I. Ishii and A. P. Hitchcock, J. Electron. Spectrosc. Relat. Phenom. 46, 55 (1988).
http://dx.doi.org/10.1016/0368-2048(88)80005-7
48.
48. A. G. Shard, J. D. Whittle, A. J. Beck, P. N. Brookes, N. A. Bullett, R. A. Talib, A. Mistry, D. Barton, and S. L. McArthur, J. Phys. Chem. B 108, 12472 (2004).
http://dx.doi.org/10.1021/jp048250f
49.
49. A. Vairavamurthy and S. Wang, Environ. Sci. Technol. 36, 3050 (2002).
http://dx.doi.org/10.1021/es0155478
50.
50. P. Leinweber, J. Kruse, F. L. Walley, A. Gillespie, K.-U. Eckhardt, R. I. R. Blyth, and T. J. Regier, Synchrotron Radiat. 14, 500 (2007).
http://dx.doi.org/10.1107/S0909049507042513
51.
51. K. H. Schleifer and O. Kandler, Bacteriol. Rev. 36, 407 (1972).
52.
52. R. Benz and K. Bauer, Eur. J. Biochem. 176, 1 (1988).
http://dx.doi.org/10.1111/j.1432-1033.1988.tb14245.x
53.
53. R. E. Hancock, Trends Microbiol. 5, 37 (1997).
http://dx.doi.org/10.1016/S0966-842X(97)81773-8
54.
54. T. Nakae, J. Ishii, and M. Tokunaga, J. Biol. Chem. 254, 1457 (1979).
55.
55. H. Nikaido, Science 264, 382 (1994).
http://dx.doi.org/10.1126/science.8153625
56.
56. T. Pylkkanen, J. Lehtola, M. Hakala, A. Sakko, G. Monaco, S. Huotari, and K. Hamalainen, J. Phys. Chem. B 114, 13076 (2010).
http://dx.doi.org/10.1021/jp106479a
57.
57. H. Yang, X. Li, Q. Zhao, G. Chen, and C. L. Raston, Environ. Sci. Technol. 46, 4042 (2012).
http://dx.doi.org/10.1021/es204079d
58.
58. P. G. Wu, J. A. Imlay, and J. K. Shang, Biomaterials 31, 7526 (2010).
http://dx.doi.org/10.1016/j.biomaterials.2010.06.032
59.
59. K. Qudiesat, K. Abu-Elteen, A. Elkarmi, M. Hamad, and M. Abussaud, Afr. J. Microbiol. Res. 3, 66 (2009).
60.
60. M. Augustowska and J. Dutkiewicz, Ann. Agric. Environ. Med. 13, 99 (2006).
61.
61. R. Mirzaei, E. Shahriary, M. I. Qureshi, A. Rakhshkhorshid, A. Khammary, and M. Mohammadi, Jundishapur J. Microbiol. 7, 11688 (2014).
http://dx.doi.org/10.5812/jjm.11688
http://aip.metastore.ingenta.com/content/avs/journal/bip/11/1/10.1116/1.4941367
Loading
/content/avs/journal/bip/11/1/10.1116/1.4941367
Loading

Data & Media loading...

Abstract

This study presents the morphological and chemical modification of the cell structure of aerosolized treated with a dielectric barrier discharge (DBD). Exposure to DBD results in severe oxidation of the bacteria, leading to the formation of hydroxyl groups and carbonyl groups and a significant reduction in amine functionalities and phosphate groups. Near edge x-ray absorption fine structure(NEXAFS) measurements confirm the presence of additional oxide bonds upon DBD treatment, suggesting oxidation of the outer layer of the cell wall. Electron microscopy images show that the bacteria undergo physical distortion to varying degrees, resulting in deformation of the bacterial structure. The electromagnetic field around the DBD coil causes severe damage to the cell structure, possibly resulting in leakage of vital cellular materials. The oxidation and chemical modification of the bacterial components are evident from the Fourier transform infrared spectroscopy and NEXAFS results. The bacterial reculture experiments confirm inactivation of airborne coli upon treating with DBD.

Loading

Full text loading...

/deliver/fulltext/avs/journal/bip/11/1/1.4941367.html;jsessionid=B7069c8eA0h9G62KURDHpW21.x-aip-live-03?itemId=/content/avs/journal/bip/11/1/10.1116/1.4941367&mimeType=html&fmt=ahah&containerItemId=content/avs/journal/bip
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=avspublications.org/11/1/10.1116/1.4941367&pageURL=http://scitation.aip.org/content/avs/journal/bip/11/1/10.1116/1.4941367'
Right1,Right2,Right3,