Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/avs/journal/bip/11/1/10.1116/1.4943046
1.
1. G. Decher, J. D. Hong, and J. Schmitt, Thin Solid Films 210–211, 831 (1992).
http://dx.doi.org/10.1016/0040-6090(92)90417-A
2.
2. G. Decher, Science 277, 1232 (1997).
http://dx.doi.org/10.1126/science.277.5330.1232
3.
3.Multilayer Thin Films–Sequential Assembly of Nanocomposite Materials, edited by G. Decher and J. B. Schlenoff, 2nd ed. ( Wiley, Weinheim, 2012).
4.
4. J. D. Mendelsohn, S. Y. Yang, J. Hiller, A. I. Hochbaum, and M. F. Rubner, Biomacromolecules 4, 96 (2003).
http://dx.doi.org/10.1021/bm0256101
5.
5. S. Y. Y. Yang, J. D. Mendelsohn, and M. F. Rubner, Biomacromolecules 4, 987 (2003).
http://dx.doi.org/10.1021/bm034035d
6.
6. S. G. Olenych, M. D. Moussallem, D. S. Salloum, J. B. Schlenoff, and T. C. S. Keller, Biomacromolecules 6, 3252 (2005).
http://dx.doi.org/10.1021/bm050298r
7.
7. D. S. Salloum, S. G. Olenych, T. C. S. Keller, and J. B. Schlenoff, Biomacromolecules 6, 161 (2005).
http://dx.doi.org/10.1021/bm0497015
8.
8. C. Picart, R. Elkaim, L. Richert, F. Audoin, Y. Arntz,  M. D. S. Cardoso, P. Schaaf, J.-C. Voegel, and B. Frisch, Adv. Funct. Mater. 15, 83 (2005).
http://dx.doi.org/10.1002/adfm.200400106
9.
9. H. Kerdjoudj, C. Boura, V. Moby, K. Montagne, P. Schaaf, J.-C. Voegel, J.-F. Stoltz, and P. Menu, Adv. Funct. Mater. 17, 2667 (2007).
http://dx.doi.org/10.1002/adfm.200600795
10.
10. J. A. Lichter, M. T. Thompson, M. Delgadillo, T. Nishikawa, M. F. Rubner, and K. J. Van Vliet, Biomacromolecules 9, 1571 (2008).
http://dx.doi.org/10.1021/bm701430y
11.
11. J. A. Lichter, K. J. Van Vliet, and M. F. Rubner, Macromolecules 42, 8573 (2009).
http://dx.doi.org/10.1021/ma901356s
12.
12. S. Y. Wong, L. Han, K. Timachova, J. Veselinovic, M. N. Hyder, C. Ortiz, A. M. Klibanov, and P. T. Hammond, Biomacromolecules 13, 719 (2012).
http://dx.doi.org/10.1021/bm201637e
13.
13. B. Nilsson, K. N. Ekdahla, T. E. Mollnes, and J. D. Lambris, Mol. Immunol. 44, 82 (2007).
http://dx.doi.org/10.1016/j.molimm.2006.06.020
14.
14. D. G. Castner and B. D. Ratner, Surf. Sci. 500, 28 (2002).
http://dx.doi.org/10.1016/S0039-6028(01)01587-4
15.
15. J. Lee, M. J. Cuddihy, and N. A. Kotov, Tissue Eng., Part B 14, 61 (2008).
http://dx.doi.org/10.1089/teb.2007.0150
16.
16. A. Nishiguchi, H. Yoshida, M. Matsusaki, and M. Akashi, Adv. Mater. 23, 3506 (2011).
http://dx.doi.org/10.1002/adma.201101787
17.
17. A. Nishiguchi, M. Matsusaki, Y. Asano, H. Shimoda, and M. Akashi, Biomaterials 35, 4739 (2014).
http://dx.doi.org/10.1016/j.biomaterials.2014.01.079
18.
18. D. E. Discher, P. Janmey, and Y. Wang, Science 310, 1139 (2005).
http://dx.doi.org/10.1126/science.1116995
19.
19.Layer-by-Layer Films for Biomedical Applications, edited by C. Picart, F. Caruso, and J.-C. Voegel ( Wiley, Weinheim, 2014).
20.
20. R. J. El-Khouri, R. Szamocki, Y. Sergeeva, O. Felix, and G. Decher, “ Multifunctional layer-by-layer architectures for biological applications,” in Functional Polymeric Ultrathin Films, edited by R. Advincula and W. Knoll ( Wiley, Weinheim, 2011), Vol. 1.
21.
21. E. Seyrek and G. Decher, “ Layer-by-layer assembly of multifunctional hybrid materials and nanoscale devices,” in Polymer Science: A Comprehensive Reference, edited by K. Matyjaszewski and M. Möller ( Elsevier BV, Amsterdam, 2012), Vol. 7.
22.
22. D. E. Discher, D. E. Mooney, and P. W. Zandstra, Science 324, 1673 (2009).
http://dx.doi.org/10.1126/science.1171643
23.
23. A. Schneider et al., Langmuir 22, 1193 (2006).
http://dx.doi.org/10.1021/la0521802
24.
24. Y. Mei et al., Nat. Mater. 9, 768 (2010).
http://dx.doi.org/10.1038/nmat2812
25.
25. M. Rabineau et al., Biomaterials 37, 144 (2015).
http://dx.doi.org/10.1016/j.biomaterials.2014.10.023
26.
26. V. Ball, A. Bentaleb, J. Hemmerlé, J.-C. Voegel, and P. Schaaf, Langmuir 12, 1614 (1996).
http://dx.doi.org/10.1021/la950735v
27.
27. L. Szyk, P. Schaaf, C. Gergely, J.-C. Voegel, and B. Tinland, Langmuir 17, 6248 (2001).
http://dx.doi.org/10.1021/la0104469
28.
28. P. Schwinté, V. Ball, B. Szalontai, Y. Haikel, J.-C. Voegel, and P. Schaaf, Biomacromolecules 3, 1135 (2002).
http://dx.doi.org/10.1021/bm025547f
29.
29. P. Huetz, V. Ball, J.-C. Voegel, and P. Schaaf, Langmuir 11, 3145 (1995).
http://dx.doi.org/10.1021/la00008a046
30.
30. T. Tamada and Y. Ikada, J. Colloid Interface Sci. 155, 334 (1993).
http://dx.doi.org/10.1006/jcis.1993.1044
31.
31. C. J. Wilson, R. E. Clegg, D. L. Leavesley, and M. J. Pearcy, Tissue Eng. 11, 1 (2005).
http://dx.doi.org/10.1089/ten.2005.11.1
32.
32. K. Anselme, L. Ploux, and A. Ponche, J. Adhes. Sci. Technol. 24, 831 (2010).
http://dx.doi.org/10.1163/016942409X12598231568186
33.
33. L. Jung et al., Mol. Hum. Reprod. 20, 538 (2014).
http://dx.doi.org/10.1093/molehr/gau012
34.
34. J. P. E. Junker, P. Sommar, M. Skog, H. Johnson, and G. Kratz, Cells Tissues Organs 191, 105 (2010).
http://dx.doi.org/10.1159/000232157
35.
35. C. Vaculik, C. Schuster, W. Bauer, N. Iram, K. Pfisterer, G. Kramer, A. Reinisch, D. Strunk, and A. Elbe-Bürger, J. Invest. Dermatol. 132, 563 (2012).
http://dx.doi.org/10.1038/jid.2011.355
36.
36. M. Mancini, G. Saintigny, C. Mahé, M. Annicchiarico-Petruzzelli, G. Melino, and E. Candi, Aging 4, 843 (2012).
37.
37. C. Huang, X. Fu, J. Liu, Y. Qi, S. Li, and H. Wang, Biomaterials 33, 1791 (2012).
http://dx.doi.org/10.1016/j.biomaterials.2011.11.025
38.
38. X. Li et al., Exp. Dermatol. 23, 682 (2014).
http://dx.doi.org/10.1111/exd.12447
39.
39. A. V. Shinde, R. Kelsh, J. H. Peters, K. Sekiguchi, L. Van De Water, and P. J. McKeown-Longo, Matrix Biol. 41, 26 (2015).
http://dx.doi.org/10.1016/j.matbio.2014.11.004
40.
40. A. Grella, D. Kole, W. Holmes, and T. Dominko, J. Cell. Biochem. 117, 1000 (2015).
http://dx.doi.org/10.1002/jcb.25386
41.
41. K. Hozumi, C. Fujimori, C. Katagiri, Y. Kikkawa, and M. Nomizu, Biomaterials 37, 73 (2015).
http://dx.doi.org/10.1016/j.biomaterials.2014.10.005
42.
42. K. Takahashi and S. Yamanaka, Cell 126, 663 (2006).
http://dx.doi.org/10.1016/j.cell.2006.07.024
43.
43. E. Cukierman, R. Pankov, D. R. Stevens, and K. M. Yamada, Science 294, 1708 (2001).
http://dx.doi.org/10.1126/science.1064829
44.
44. J. J. Ramsden, Y. M. Lvov, and G. Decher, Thin Solid Films 254, 246 (1995).
http://dx.doi.org/10.1016/0040-6090(94)06262-J
45.
45. G. Ladam, P. Schaad, J.-C. Voegel, P. Schaaf, G. Decher, and F. Cuisinier, Langmuir 16, 1249 (2000).
http://dx.doi.org/10.1021/la990650k
46.
46. F. Caruso, K. Niikura, D. N. Furlong, and Y. Okahata, Langmuir 13, 3422 (1997).
http://dx.doi.org/10.1021/la960821a
47.
47. N. M. Alves, C. Picart, and J. F. Mano, Macromol. Biosci. 9, 776 (2009).
http://dx.doi.org/10.1002/mabi.200800336
48.
48. H. W. Jomaa and J. B. Schlenoff, Macromolecules 38, 8473 (2005).
http://dx.doi.org/10.1021/ma050072g
49.
49. Y. Lvov, M. Onda, K. Ariga, and T. Kunitake, J. Biomater. Sci., Polym. Ed. 9, 345 (1998).
http://dx.doi.org/10.1080/09205063.1998.9753060
50.
50. N. Habibi, L. Pastorino, and C. Ruggiero, Mater. Sci. Eng., C 35, 15 (2014).
http://dx.doi.org/10.1016/j.msec.2013.10.011
51.
51.See supplementary material at http://dx.doi.org/10.1116/1.4943046 for QCM-D data.[Supplementary Material]
52.
52. G. Sauerbrey, Z. Phys. 155, 206 (1959).
http://dx.doi.org/10.1007/BF01337937
53.
53. B. Amsden and N. Turner, Biotechnol. Bioeng. 65, 605 (1999).
http://dx.doi.org/10.1002/(SICI)1097-0290(19991205)65:5<605::AID-BIT14>3.0.CO;2-C
54.
54. P. Tryoen-Toth, D. Vautier, Y. Haikel, J.-C. Voegel, P. Schaaf, J. Chluba, and J. Ogier, J. Biomed. Mater. Res. 60, 657 (2002).
http://dx.doi.org/10.1002/jbm.10110
55.
55. C. Brunot, B. Grosgogeat, C. Picart, C. Lagneau, N. Jaffrezic-Renault, and L. Ponsonnet, Dent. Mater. 24, 1025 (2008).
http://dx.doi.org/10.1016/j.dental.2007.11.022
56.
56. G. Francius, J. Hemmerlé, V. Ball, Ph. Lavalle, C. Picart, J.-C. Voegel, P. Schaaf, and B. Senger, J. Phys. Chem. C 111, 8299 (2007).
http://dx.doi.org/10.1021/jp070435+
57.
57. K. Ren, L. Fourel, C. G. Rouvière, C. Albiges-Rizo, and C. Picart, Acta Biomater. 6, 4238 (2010).
http://dx.doi.org/10.1016/j.actbio.2010.06.014
58.
58. M. D. Moussallem, S. G. Olenych, S. L. Scott, T. C. S. Keller, and J. B. Schlenoff, Biomacromolecules 10, 3062 (2009).
http://dx.doi.org/10.1021/bm9007309
59.
59. L. Richert, Ph. Lavalle, E. Payan, X. Z. Shu, G. D. Prestwich, J.-F. Stoltz, P. Schaaf, J.-C. Voegel, and C. Picart, Langmuir 20, 448 (2004).
http://dx.doi.org/10.1021/la035415n
60.
60. L. Richert, Y. Arntz, P. Schaaf, J.-C. Voegel, and C. Picart, Surf. Sci. 570, 13 (2004).
http://dx.doi.org/10.1016/j.susc.2004.06.178
61.
61. L. Richert, A. Schneider, D. Vautier, D. Vodouhe, N. Jessel, E. Payan, P. Schaaf, J.-C. Voegel, and C. Picart, Cell Biochem. Biophys. 44, 273 (2006).
http://dx.doi.org/10.1385/CBB:44:2:273
62.
62. O. V. Semenov, A. Malek, A G. Bittermann, J. Vörös, and A. H. Zisch, Tissue Eng., Part A 15, 2977 (2009).
http://dx.doi.org/10.1089/ten.tea.2008.0602
63.
63. V. Gribova, C. Gauthier-Rouvière, C. Albigès-Rizo, R. Auzely-Velty, and C. Picart, Acta Biomater. 9, 6468 (2013).
http://dx.doi.org/10.1016/j.actbio.2012.12.015
64.
64. D. Fischer, Y. Lib, B. Ahlemeyer, J. Krieglstein, and T. Kissel, Biomaterials 24, 1121 (2003).
http://dx.doi.org/10.1016/S0142-9612(02)00445-3
65.
65. L. Jourdainne, S. Lecuyer, Y. Arntz, C. Picart, P. Schaaf, B. Senger, J.-C. Voegel, P. Lavalle, and T. Charitat, Langmuir 24, 7842 (2008).
http://dx.doi.org/10.1021/la7040168
66.
66. J. M. Garza, P. Schaaf, S. Muller, V. Ball, J. F. Stoltz, J.-C. Voegel, and P. Lavalle, Langmuir 20, 7298 (2004).
http://dx.doi.org/10.1021/la049106o
67.
67. P. Lavalle, C. Gergely, F. J. G. Cuisinier, G. Decher, P. Schaaf, J.-C. Voegel, and C. Picart, Macromolecules 35, 4458 (2002).
http://dx.doi.org/10.1021/ma0119833
68.
68. S. Kidambi, I. Lee, and C. Chan, J. Am. Chem. Soc. 126, 16286 (2004).
http://dx.doi.org/10.1021/ja046188u
69.
69. A. M. Lehaf, H. H. Hariri, and J. B. Schlenoff, Langmuir 28, 6348 (2012).
http://dx.doi.org/10.1021/la300482x
70.
70. L. Jourdainne, Y. Arntz, B. Senger, C. Debry, J.-C. Voegel, P. Schaaf, and P. Lavalle, Macromolecules 40, 316 (2007).
http://dx.doi.org/10.1021/ma062201e
71.
71. K. Apaydin, A. Laachachi, J. Bour, V. Toniazzo, D. Ruch, and V. Ball, Colloids Surf., A 415, 274 (2012).
http://dx.doi.org/10.1016/j.colsurfa.2012.09.036
http://aip.metastore.ingenta.com/content/avs/journal/bip/11/1/10.1116/1.4943046
Loading
/content/avs/journal/bip/11/1/10.1116/1.4943046
Loading

Data & Media loading...

Abstract

Layer-by-layer (LbL) assembled multicomponent films offer the opportunity to control and to fine-tune cell attachment and behavior on solid surfaces [, edited by Picart . (Wiley, Weinheim, 2014) and El-Khouri ., “Multifunctional layer-by-layer architectures for biological applications,” in , edited by Advincula and Knoll (Wiley, Weinheim, 2011), Vol. 1]. At the same time, these films allow for quite detailed physicochemical characterization of static and dynamic surface properties that are typically not available in classic cell culture. In this report, the authors investigate cell adhesion and cytocompatibility of compositionally and morphologically similar thin films composed of oppositely charged synthetic or natural polyelectrolytes in which different physical parameters such as surface charge or water content are varied through chemical composition and deposition conditions. Human adult dermal fibroblasts were chosen as a model because of the need for chemically defined matrix in the field of primary cell amplification. The growth and the stability of the multilayer films in the incubation media were studied dissipation-enhanced quartz crystal micobalance (QCM-D) and ellipsometry. The QCM-D signals observed during the film deposition were analyzed qualitatively to estimate the viscoelastic properties of the films. The authors used contact angle measurements with water to study the contribution of the chemical functionalities to wetting behavior of the films. Most importantly, they also studied the interaction of the films with serum components. Our results underline that cell adhesion is a highly complex process which is not only governed by the functionality of a surface but also by its morphology, its affinity for serum components, and also by changes of surface properties brought about by adsorbing molecules. Of the many LbL-films tested, poly(4-styrenesulfonate)/poly(allyl amine) multilayers were best suited for our fibroblast cultures, which opens a way to avoid gelatin based and similar substrates whose exact chemical composition is unknown.

Loading

Full text loading...

/deliver/fulltext/avs/journal/bip/11/1/1.4943046.html;jsessionid=k9yificrZ1XUoLHw9RXyo-Cu.x-aip-live-03?itemId=/content/avs/journal/bip/11/1/10.1116/1.4943046&mimeType=html&fmt=ahah&containerItemId=content/avs/journal/bip
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=avspublications.org/11/1/10.1116/1.4943046&pageURL=http://scitation.aip.org/content/avs/journal/bip/11/1/10.1116/1.4943046'
Right1,Right2,Right3,