Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. A. W. M. Prince, M. Guerchet, G.-C. Ali, Y. Wu, and M. Prina, “Alzheimer's Disease International,” (2015).
2. C. Ballard, S. Gauthier, A. Corbett, C. Brayne, D. Aarsland, and E. Jones, Lancet 377, 1019 (2011).
3. P. H. St George-Hyslop, Sci. Am. 283, 76 (2000).
4. L. Puglielli, R. E. Tanzi, and D. M. Kovacs, Nat. Neurosci. 6, 345 (2003).
5. G. Di Paolo and T. W. Kim, Nat. Rev. Neurosci. 12, 284 (2011).
6. X. L. Han, Biochim. Biophys. Acta, Mol. Cell Biol. Lipids 1801, 774 (2010).
7. M. K. Passarelli and N. Winograd, Biochim. Biophys. Acta, Mol. Cell Biol. Lipids 1811, 976 (2011).
8. A. Brunelle, D. Touboul, and O. Laprévote, J. Mass Spectrom. 40, 985 (2005).
9. C. Bich, D. Touboul, and A. Brunelle, Biointerphases 10, 018901 (2015).
10. T. C. Rohner, D. Staab, and M. Stoeckli, Mech. Ageing Dev. 126, 177 (2005).
11. S. Solé-Domènech et al., Acta Neuropathol. 125, 145 (2013).
12. A. Lazar et al., Acta Neuropathol. 125, 133 (2013).
13. L.-J. Chen, S. S. Shah, J. Silangcruz, M. J. Eller, S. V. Verkhoturov, A. Revzin, and E. A. Schweikert, Int. J. Mass Spectrom. 303, 97 (2011).
14. G. Thiery-Lavenant, C. Guillermier, M. Wang, and C. Lechene, Surf. Interface Anal. 46, 147 (2014).
15. R. L. Wilson, J. F. Frisz, W. P. Hanafin, K. J. Carpenter, I. D. Hutcheon, P. K. Weber, and M. L. Kraft, Bioconjugate Chem. 23, 450 (2012).
16. R. L. Wilson, J. F. Frisz, H. A. Klitzing, J. Zimmerberg, P. K. Weber, and M. L. Kraft, Biophys. J. 108, 1652 (2015).
17. M. Angelo et al., Nat. Med. 20, 436442 (2014).
18. L. Nobs, F. Buchegger, R. Gurny, and E. Allémann, J. Pharm. Sci. 93, 1980 (2004).
19. A. Gunnarsson, F. Kollmer, S. Sohn, F. Höök, and P. Sjövall, Anal. Chem. 82, 2426 (2010).
20. P. Sjövall, B. Agnarsson, L. Carlred, A. Gunnarsson, and F. Höök, Surf. Interface Anal. 46, 707 (2014).
21. L. Carlred et al., J. Am. Chem. Soc. 136, 9973 (2014).
22. K. Hsiao, P. Chapman, S. Nilsen, C. Eckman, Y. Harigaya, S. Younkin, F. Yang, and G. Cole, Science 274, 99 (1996).
23.See supplementary material at for peaks used to produce the images (Table SI), and additional experiments with QCM-D using immunoliposomes conjugated to secondary antibodies (Fig. S1) and investigation of nonspecific binding to nontransgenic mouse brain section (Fig. S2–S3).[Supplementary Material]
24.“Allen Institute for Brain Science,”
25. R. Marie, J. P. Beech, J. Vörös, J. O. Tegenfeldt, and F. Höök, Langmuir 22, 10103 (2006).
26. R. Marie, A. B. Dahlin, J. O. Tegenfeldt, and F. Höök, Biointerphases 2, 49 (2007).
27. E. Reimhult, F. Hook, and B. Kasemo, J. Chem. Phys. 117, 7401 (2002).
28. A. S. Davis, A. Richter, S. Becker, J. E. Moyer, A. Sandouk, J. Skinner, and J. K. Taubenberger, J. Histochem. Cytochem. 62, 405 (2014).
29. I. B. Razo, S. Sheraz, A. Henderson, N. P. Lockyer, and J. C. Vickerman, Rapid Commun. Mass Spectrom. 29, 1851 (2015).
30. P. Sjövall, B. Johansson, and J. Lausmaa, Appl. Surf. Sci. 252, 6966 (2006).
31. C. Bich, R. Havelund, R. Moellers, D. Touboul, F. Kollmer, E. Niehuis, I. S. Gilmore, and A. Brunelle, Anal. Chem. 85, 7745 (2013).
32. T. B. Angerer, M. Dowlatshahi Pour, P. Malmberg, and J. S. Fletcher, Anal. Chem. 87, 4305 (2015).

Data & Media loading...


Time-of-flight secondary ion mass spectrometry (ToF-SIMS) has been proven to successfully image different kinds of molecules, especially a variety of lipids, in biological samples. Proteins, however, are difficult to detect as specific entities with this method due to extensive fragmentation. To circumvent this issue, the authors present in this work a method developed for detection of proteins using antibody-conjugated liposomes, so called immunoliposomes, which are able to bind to the specific protein of interest. In combination with the capability of ToF-SIMS to detect native lipids in tissue samples, this method opens up the opportunity to analyze many different biomolecules, both lipids and proteins, at the same time, with high spatial resolution. The method has been applied to detect and image the distribution of amyloid-β (Aβ), a biologically relevant peptide in Alzheimer's disease (AD), in transgenic mouse braintissue. To ensure specific binding, the immunoliposome binding was verified on a model surface using quartz crystal microbalance with dissipation monitoring. The immunoliposome binding was also investigated on tissue sections with fluorescence microscopy, and compared with conventional immunohistochemistry using primary and secondary antibodies, demonstrating specific binding to Aβ. Using ToF-SIMS imaging, several endogenous lipids, such as cholesterol and sulfatides, were also detected in parallel with the immunoliposome-labeled Aβ deposits, which is an advantage compared to fluorescence microscopy. This method can thus potentially provide further information about lipid–protein interactions, which is important to understand the mechanisms of neurodegeneration in AD.


Full text loading...