Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/avs/journal/bip/11/2/10.1116/1.4941009
1.
1. J. S. Fletcher and J. C. Vickerman, Anal. Chem. 85, 610 (2013).
http://dx.doi.org/10.1021/ac303088m
2.
2. M. K. Passarelli and N. Winograd, Biochim. Biophys. Acta 1811, 976 (2011).
http://dx.doi.org/10.1016/j.bbalip.2011.05.007
3.
3. M. K. Passarelli, C. F. Newman, P. S. Marshall, A. West, I. S. Gilmore, J. Bunch, M. R. Alexander, and C. T. Dollery, Anal. Chem. 87, 6696 (2015).
http://dx.doi.org/10.1021/acs.analchem.5b00842
4.
4. A. Römpp et al., Anal. Bioanal. Chem. 407, 2329 (2015).
http://dx.doi.org/10.1007/s00216-014-8410-7
5.
5. S. Rabbani, A. M. Barber, J. S. Fletcher, N. P. Lockyer, and J. C. Vickerman, Anal. Chem. 83, 3793 (2011).
http://dx.doi.org/10.1021/ac200288v
6.
6. K. E. Ryan, I. A. Wojciechowski, and B. J. Garrison, J. Phys. Chem. C. 111, 12822 (2007).
http://dx.doi.org/10.1021/jp071380e
7.
7. A. Wucher, H. Tian, and N. Winograd, Rapid Commun. Mass Spectrom. 28, 396 (2014).
http://dx.doi.org/10.1002/rcm.6793
8.
8. S. Sheraz née Rabbani, A. Barber, I. Berrueta Razo, J. S. Fletcher, N. P. Lockyer, and J. C. Vickerman, Surf. Interface Anal. 46, 51 (2014).
http://dx.doi.org/10.1002/sia.5606
9.
9. S. Sheraz née Rabbani, I. B. Razo, T. Kohn, N. P. Lockyer, and J. C. Vickerman, Anal. Chem. 87, 2376 (2015).
http://dx.doi.org/10.1021/ac504191m
10.
10. S. Keskin, A. Piwowar, J. Hue, K. Shen, and N. Winograd, Surf. Interface Anal. 45, 244 (2012).
http://dx.doi.org/10.1002/sia.4900
11.
11. A. G. Shard, S. J. Spencer, S. A. Smith, R. Havelund, and I. S. Gilmore, Int. J. Mass Spectrom. 377, 599 (2015).
http://dx.doi.org/10.1016/j.ijms.2014.06.027
12.
12. E. A. Jones, N. P. Lockyer, J. Kordys, and J. C. Vickerman, J. Am. Soc. Mass Spectrom. 18, 1559 (2007).
http://dx.doi.org/10.1016/j.jasms.2007.05.014
13.
13. J. S. Fletcher, H. L. Kotze, E. G. Armitage, N. P. Lockyer, and J. C. Vickerman, Metabolomics 9, 535 (2013).
http://dx.doi.org/10.1007/s11306-012-0487-4
14.
14. M. Inoue and A. Murase, Surf. Interface Anal. 37, 1111 (2005).
http://dx.doi.org/10.1002/sia.2121
15.
15. G. Karras and N. P. Lockyer, J. Am. Soc. Mass Spectrom. 25, 832 (2014).
http://dx.doi.org/10.1007/s13361-014-0847-6
16.
16.“NIST Chemistry WebBook,” Accessed 6 January 2016, http://webbook.nist.gov/chemistry/
17.
17. J. S. Fletcher, S. Rabbani, A. Henderson, P. Blenkinsopp, S. P. Thompson, N. P. Lockyer, and J. C. Vickerman, Anal. Chem. 80, 9058 (2008).
http://dx.doi.org/10.1021/ac8015278
18.
18. I. Berrueta Razo, S. Sheraz, A. Henderson, N. P. Lockyer, and J. C. Vickerman, Surf. Interface Anal. 46, 136 (2014).
http://dx.doi.org/10.1002/sia.5597
19.
19. S. Sheraz née Rabbani, A. Barber, J. S. Fletcher, N. P. Lockyer, and J. C. Vickerman, Anal. Chem. 85, 5654 (2013).
http://dx.doi.org/10.1021/ac4013732
20.
20. I. B. Razo, S. Sheraz née Rabbani, A. Henderson, N. P. Lockyer, and J. C. Vickerman, Rapid Commun. Mass Spectrom. 29, 1851 (2015).
http://dx.doi.org/10.1002/rcm.7285
21.
21.See supplementary material at http://dx.doi.org/10.1116/1.4941009 for depth profile data and direct comparison of secondary ion yields from each component in pure and mixture sample.[Supplementary Material]
http://aip.metastore.ingenta.com/content/avs/journal/bip/11/2/10.1116/1.4941009
Loading
/content/avs/journal/bip/11/2/10.1116/1.4941009
Loading

Data & Media loading...

Abstract

The influence of the matrix effect on secondary ion yield presents a very significant challenge in quantitative secondary ion mass spectrometry(SIMS)analysis, for example, in determining the relative concentrations of metabolites that characterize normal biological activities or disease progression. Not only the sample itself but also the choice of primary ion beam may influence the extent of ionization suppression/enhancement due to the local chemical environment. In this study, an assessment of ionization matrix effects was carried out on model systems using C+, Ar+, and (HO)+ cluster ion beams. The analytes are pure and binary mixtures of amino acids arginine and histidine biological standards. Ion beams of 20 keV were compared with a range of cluster sizes n = 1000–10 000. The component secondary ion yields were assessed for matrix effects using different primary ion beams and sample composition. The presence of water in the cluster beam is associated with a reduction in the observed matrix effects, suggesting that chemically reactive ion beams may provide a route to more quantitative SIMSanalysis of complex biological systems.

Loading

Full text loading...

/deliver/fulltext/avs/journal/bip/11/2/1.4941009.html;jsessionid=mHf3Uc3X0DirOsf-GFBORr8Y.x-aip-live-03?itemId=/content/avs/journal/bip/11/2/10.1116/1.4941009&mimeType=html&fmt=ahah&containerItemId=content/avs/journal/bip
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=avspublications.org/11/2/10.1116/1.4941009&pageURL=http://scitation.aip.org/content/avs/journal/bip/11/2/10.1116/1.4941009'
Right1,Right2,Right3,