Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. Z. Postawa, R. Paruch, L. Rzenzik, and B. J. Garrison, Surf. Interface Anal. 45, 35 (2013).
2. E. Niehuis, R. Möllers, D. Rading, H.-G. Cramer, and R. Kersting, Surf. Interface Anal. 45, 158 (2013).
3. K. Moritani, M. Tanaka, N. Inui, and K. Mochiji, Surf. Interface Anal. 45, 143 (2013).
4. K. Mochiji, J. Anal. Bioanal. Tech. S2:001 (2011).
5. D. Weibel, S. Wong, L. Lockyer, P. Blenkinsopp, R. Hill, and J. C. Vickerman, Anal. Chem. 75, 1754 (2003).
6. O. Oshima, I. Kashihara, K. Moritani, N. Inui, and K. Mochiji, Rapid Commun. Mass Spectrom. 25, 1070 (2011).
7. A. G. Shard et al., Anal. Chem. 84, 7865 (2012).
8. A. G. Shard, S. Ray, M. P. Seah, and L. Yang, Surf. Interface Anal. 43, 1240 (2011).
9. A. G. Shard et al., J. Phys. Chem. B 119, 10784 (2015).
10. S. Muramoto, D. Rading, B. Bush, G. Gillen, and D. G. Castner, Rapid Commun. Mass Spectrom. 28, 1971 (2014).
11. N. Wehbe, T. Tabarrant, J. Brison, T. Mouhib, A. Delcorte, P. Bertrand, R. Moellers, E. Niehuis, and L. Houssiau, Surf. Interface Anal. 45, 178 (2013).
12. T. B. Angerer, P. Blenkisopp, and J. S. Fletcher, Int. J. Mass Spectrom. 377, 591 (2015).
13. A. Brunelle, D. Touboul, and O. Laprévote, J. Mass Spectrom. 40, 985 (2005).
14. J. S. Fletcher, N. P. Lockyer, and J. C. Vickerman, Surf. Interface Anal. 43, 253 (2011).
15. T. B. Angerer, M. D. Pour, P. Malmberg, and J. S. Fletcher, Anal. Chem. 87, 4305 (2015).
16. J. S. Fletcher and J. C. Vickerman, Anal. Bioanal. Chem. 396, 85 (2010).
17. W. C. Willy and I. H. McLaren, Rev. Sci. Instrum. 26, 1150 (1955).
18. M. L. Vestal, P. Juhasz, and S. A. Martin, Rapid Commun. Mass Spectrom. 9, 1044 (1995).
19. P. Juhasz, M. L. Vestal, and S. A. Martin, J. Am. Soc. Mass Spectrom. 8, 209 (1997).
20. C. Cersoy, P. Richardin, P. Walker, and A. Brunelle, J. Mass Spectrom. 47, 338 (2012).
21. L. L. Hanay and D. E. Riederer, Anal. Chim. Acta 397, 225 (1999).
22. A. G. Sostarecz, C. M. McQuaw, A. Wucher, and N. Winograd, Anal. Chem. 76, 6651 (2004).
23. J. Cheng and N. Winograd, Anal. Chem. 77, 3651 (2005).
24. S. Parry and N. Winograd, Anal. Chem. 77, 7950 (2005).
25. S. V. Baryshev, A. V. Zinovev, C. E. Tripa, M. J. Pellin, Q. Peng, J. W. Elam, and I. V. Veryovkin, Rapid Commun. Mass Spectrom. 26, 2224 (2012).
26. A. King, T. Henkel, D. Rost, and I. C. Lyon, Rapid Commun. Mass Spectrom. 24, 15 (2010).
27. J. L S. Lee, I. S. Gilmore, M. P. Seah, and I. W. Fletcher, J. Am. Soc. Mass Spectrom. 22, 1718 (2011).
28. Q. P. Vanbellingen, N. Elie, M. J. Eller, S. Della-Negra, D. Touboul, and A. Brunelle, Rapid Commun. Mass Spectrom. 29, 1187 (2015).
29. Goborn, M. , Mueller, V. , Egelhofer, D. , Theiss, H. Lehrach, and E. Nordhoff, Anal. Chem. 74, 3915 (2002).
30. R. L. Wong and I. J. Amster, Am. Soc. Mass Spectrom. 17, 1681 (2006).
31. K. Sládková, J. Houška, and J. Havel, Rapid Commun. Mass Spectrom. 23, 3114 (2009).
32. J. Lyczko, D. G. Beach, and W. Gabryelski, J. Mass Spectrom. 50, 463 (2015).
33. H. Min, J. W. Park, H. K. Shon, D. W. Moon, and T. G. Lee, Appl. Surf. Sci. 255, 1025 (2008).
34.ION-TOF GmbH Technical Engineer, personal communication (12 January 2016).

Data & Media loading...


The popularity of argon gas cluster ion beams (Ar-GCIB) as primary ion beams in time-of-flight secondary ion mass spectrometry (TOF-SIMS) has increased because the molecular ions of large organic- and biomolecules can be detected with less damage to the sample surfaces. However, Ar-GCIB is limited by poor mass resolution as well as poor mass accuracy. The inferior quality of the mass resolution in a TOF-SIMS spectrum obtained by using Ar-GCIB compared to the one obtained by a bismuth liquid metal cluster ion beam and others makes it difficult to identify unknown peaks because of the mass interference from the neighboring peaks. However, in this study, the authors demonstrate improved mass resolution in TOF-SIMS using Ar-GCIB through the delayed extraction of secondary ions, a method typically used in TOF mass spectrometry to increase mass resolution. As for poor mass accuracy, although mass calibration using internal peaks with low mass such as hydrogen and carbon is a common approach in TOF-SIMS, it is unsuited to the present study because of the disappearance of the low-mass peaks in the delayed extraction mode. To resolve this issue, external mass calibration, another regularly used method in TOF-MS, was adapted to enhance mass accuracy in the spectrum and image generated by TOF-SIMS using Ar-GCIB in the delayed extraction mode. By producing spectraanalyses of a peptide mixture and bovine serum albumin protein digested with trypsin, along with image analyses of rat brain samples, the authors demonstrate for the first time the enhancement of mass resolution and mass accuracy for the purpose of analyzing large biomolecules in TOF-SIMS using Ar-GCIB through the use of delayed extraction and external mass calibration.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd