Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. D. G. Castner and B. D. Ratner, Surf. Sci. 500, 28 (2002).
2. T. A. Horbett, ACS Symp. Ser. 602, 1 (1995).
3. M. B. Gorbet and M. V. Sefton, Biomaterials 25, 5681 (2004).
4. M. Joner et al., J. Am. Coll. Cardiol. 48, 193 (2006).
5. P. Paulinska, A. Spiel, and B. Jilma, Hamostaseologie 29, 32 (2009).
6. J. E. Sadler, J. Thromb. Haemostasis 7, 24 (2009).
7. S. Miura, C. Q. Li, Z. Cao, H. Wang, M. R. Wardell, and J. E. Sadler, J. Biol. Chem. 275, 7539 (2000).
8. J. J. Dumas, R. Kumar, T. McDonagh, F. Sullivan, M. L. Stahl, W. S. Somers, and L. Mosyak, J. Biol. Chem. 279, 23327 (2004).
9. E. G. Huizinga, S. Tsuji, R. A. Romijn, M. E. Schiphorst, P. G. de Groot, J. J. Sixma, and P. Gros, Science 297, 1176 (2002).
10. S. Goto, Y. Ikeda, E. Saldivar, and Z. M. Ruggeri, J. Clin. Invest. 101, 479 (1998).
11. H. Shankaran, P. Alexandridis, and S. Neelamegham, Blood 101, 2637 (2003).
12. B. Savage, E. Saldivar, and Z. M. Ruggeri, Cell 84, 289 (1996).
13. D. A. Beacham, R. J. Wise, S. M. Turci, and R. I. Handin, J. Biol. Chem. 267, 3409 (1992).
14. S. W. Schneider, S. Nuschele, A. Wixforth, C. Gorzelanny, A. Alexander-Katz, R. R. Netz, and M. F. Schneider, Proc. Natl. Acad. Sci. U. S. A. 104, 7899 (2007).
15. P. J. Lenting, J. N. Pegon, E. Groot, and P. G. Groot, Thromb. Haemostasis 104, 449 (2010).
16. T. Yago et al., J. Clin. Invest. 118, 3195 (2008).
17. M. De Luca, D. A. Facey, E. J. Favaloro, M. S. Hertzberg, J. C. Whisstock, T. McNally, R. K. Andrews, and M. C. Berndt, Blood 95, 164 (2000).
18. S. Miyata and Z. M. Ruggeri, J. Biol. Chem. 274, 6586 (1999).
19. R. A. Kumar, J. F. Dong, J. A. Thaggard, M. A. Cruz, J. A. Lopez, and L. V. McIntire, Biophys. J. 85, 4099 (2003).
20. T. Weidner and D. G. Castner, Phys. Chem. Chem. Phys. 15, 12516 (2013).
21. R. Michel, S. Pasche, M. Textor, and D. G. Castner, Langmuir 21, 12327 (2005).
22. L. Cao, M. Chang, C.-Y. Lee, D. G. Castner, S. Sukavaneshvar, B. D. Ratner, and T. A. Horbett, J. Biomed. Mater. Res., Part A 81A, 827 (2007).
23. B. Sivaraman, K. P. Fears, and R. A. Latour, Langmuir 25, 3050 (2009).
24. D. R. Davies, E. A. Padlan, and S. Sheriff, Annu. Rev. Biochem. 59, 439 (1990).
25. F. Cheng, L. J. Gamble, and D. G. Castner, Anal. Chem. 80, 2564 (2008).
26. H. Wang, D. G. Castner, B. D. Ratner, and S. Jiang, Langmuir 20, 1877 (2004).
27. J.-B. Lhoest, E. Detrait, P. V. D. B. D. Aguilar, and P. Bertrand, J. Biomed. Mater. Res. 41, 95 (1998).<95::AID-JBM12>3.0.CO;2-G
28. M. Henry, C. Dupont-Gillain, and P. Bertrand, Langmuir 19, 6271 (2003).
29. M. L. Godek, R. Michel, L. M. Chamberlain, D. G. Castner, and D. W. Grainger, J. Biomed. Mater. Res., Part A 88A, 503 (2009).
30. N. Xia, C. J. May, S. L. McArthur, and D. G. Castner, Langmuir 18, 4090 (2002).
31. L. H. Stanker, A. V. Serban, E. Cleveland, R. Hnasko, A. Lemus, J. Safar, S. J. De Armond, and S. B. Prusiner, J. Immunol. 185, 729 (2010).
32. C. Y. Song, W. L. Chen, M. C. Yang, J. P. Huang, and S. J. T. Mao, J. Biol. Chem. 280, 3574 (2005).
33. R. Michel and D. G. Castner, Surf. Interface Anal. 38, 1386 (2006).
34. L. Baugh, T. Weidner, J. E. Baio, P.-C. T. Nguyen, L. J. Gamble, P. S. Stayton, and D. G. Castner, Langmuir 26, 16434 (2010).
35. F. Liu, M. Dubey, H. Takahashi, D. G. Castner, and D. W. Grainger, Anal. Chem. 82, 2947 (2010).
36. M. Raghavachari, H.-M. Tsai, K. Kottke-Marchant, and R. E. Marchant, Colloids Surf., B 19, 315 (2000).
37. I. Kang, M. Raghavachari, C. M. Hofmann, and R. E. Marchant, Thromb. Res. 119, 731 (2007).
38. J. Emsley, M. Cruz, R. Handin, and R. Liddington, J. Biol. Chem. 273, 10396 (1998).
39. S. Goto, D. R. Salomon, Y. Ikeda, and Z. M. Ruggeri, J. Biol. Chem. 270, 23352 (1995).
40. J. F. Dong, M. C. Berndt, A. Schade, L. V. McIntire, R. K. Andrews, and J. A. Lopez, Blood 97, 162 (2001).
41. M. S. Wagner and D. G. Castner, Langmuir 17, 4649 (2001).
42. B. D. Ratner and T. A. Horbett, J. Colloid Interface Sci. 83, 630 (1981).
43. C. D. Tidwell, D. G. Castner, S. L. Golledge, B. D. Ratner, K. Meyer, B. Hagenhoff, and A. Benninghoven, Surf. Interface Anal. 31, 724 (2001).
44. M. S. Wagner, T. A. Horbett, and D. G. Castner, Biomaterials 24, 1897 (2003).
45.See supplementary material at for tables of the complete list of amino acid peaks from TOF-SIMS and of elemental compositions from XPS experiments.[Supplementary Material]
46. Z. M. Ruggeri and G. L. Mendolicchio, Circ. Res. 100, 1673 (2007).
47. B. J. Fredrickson, J. F. Dong, L. V. McIntire, and J. A. Lopez, Blood 92, 3684 (1998).
48. M. S. Wagner, S. L. McArthur, M. Shen, T. A. Horbett, and D. G. Castner, J. Biomater. Sci., Polym. Ed. 13, 407 (2002).
49. M. Auton, K. E. Sowa, S. M. Smith, E. Sedlak, K. V. Vijayan, and M. A. Cruz, J. Biol. Chem. 285, 22831 (2010).
50. Y. Zubavichus, A. Shaporenko, M. Grunze, and M. Zharnikov, J. Phys. Chem. B 111, 9803 (2007).
51. G. Cooper, M. Gordon, D. Tulumello, C. Turci, K. Kaznatcheev, and A. P. Hitchcock, J. Electron Spectrosc. Relat. Phenom. 137–140, 795 (2004).
52. A. P. Hitchcock, C. Morin, Y. M. Heng, R. M. Cornelius, and J. L. Brash, J. Biomater. Sci., Polym. Ed. 13, 919 (2002).
53. J. E. Baio, T. Weidner, N. T. Samuel, K. McCrea, L. Baugh, P. S. Stayton, and D. G. Castner, J. Vac. Sci. Technol., B 28, C5D1 (2010).
54. G. Polzonetti, C. Battocchio, G. Iucci, M. Dettin, R. Gambaretto, C. Di Bello, and V. Carravetta, Mater. Sci. Eng., C 26, 929 (2006).
55. M. Auton, E. Sedlak, J. Marek, T. Wu, C. Zhu, and M. A. Cruz, Biophys. J. 97, 618 (2009).
56. T. A. Doggett, G. Girdhar, A. Lawshe, D. W. Schmidtke, I. J. Laurenzi, S. L. Diamond, and T. G. Diacovo, Biophys. J. 83, 194 (2002).
57. M. Auton, K. E. Sowa, M. Behymer, and M. A. Cruz, J. Biol. Chem. 287, 14579 (2012).
58. A. Tischer, M. A. Cruz, and M. Auton, Protein Sci. 22, 1049 (2013).
59. L. Ju, J. F. Dong, M. A. Cruz, and C. Zhu, J. Biol. Chem. 288, 32289 (2013).
60. L. Ju, Y. Chen, F. Zhou, H. Lu, M. A. Cruz, and C. Zhu, Thromb. Res. 136, 606 (2015).
61. L. D. Morales, C. Martin, and M. A. Cruz, J. Thromb. Haemostasis 4, 417 (2006).
62. R. Celikel, Z. M. Ruggeri, and K. I. Varughese, Nat. Struct. Biol. 7, 881 (2000).
63. K. Fukuda, T. Doggett, I. J. Laurenzi, R. C. Liddington, and T. G. Diacovo, Nat. Struct. Mol. Biol. 12, 152 (2005).
64. G. Interlandi and W. Thomas, Proteins 78, 2506 (2010).
65. A. B. Federici, P. M. Mannucci, G. Castaman, L. Baronciani, P. Bucciarelli, M. T. Canciani, A. Pecci, P. J. Lenting, and P. G. De Groot, Blood 113, 526 (2009).
66. S. Miyata, S. Goto, A. B. Federici, J. Ware, and Z. M. Ruggeri, J. Biol. Chem. 271, 9046 (1996).
67. W. J. Hu, J. W. Eaton, and L. P. Tang, Blood 98, 1231 (2001).
68. B. G. Keselowsky, D. M. Collard, and A. J. Garcia, J. Biomed. Mater. Res., A 66A, 247 (2003).
69. B. D. Ratner, J. Biomed. Mater. Res. 27, 283 (1993).
70. B. D. Ratner, Biomaterials 28, 5144 (2007).

Data & Media loading...


The clotting protein von Willebrand factor (VWF) binds to platelet receptor glycoprotein Ibα (GPIbα) when VWF is activated by chemicals, high shear stress, or immobilization onto surfaces. Activation of VWF by surface immobilization is an important problem in the failure of cardiovascular implants, but is poorly understood. Here, the authors investigate whether some or all surfaces can activate VWF at least in part by affecting the orientation or conformation of the immobilized GPIbα-binding A1 domain of VWF. Platelets binding to A1 adsorbed onto polystyrene surfaces translocated rapidly at moderate and high flow, but detached at low flow, while platelets binding to A1 adsorbed onto glass or tissue-culture treated polystyrene surfaces translocated slowly, and detached only at high flow. Both x-ray photoelectron spectroscopy and conformation independent antibodies reported comparable A1 amounts on all surfaces. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) and near-edge x-ray absorption fine structure spectra suggested differences in orientation on the three surfaces, but none that could explain the biological data. Instead, ToF-SIMS data and binding of conformation-dependent antibodies were consistent with the stabilization of an alternative more activated conformation of A1 by tissue culture polystyrene and especially glass. These studies demonstrate that different materialsurfaces differentially affect the conformation of adsorbed A1 domain and its biological activity. This is important when interpreting or designing experiments with surface-adsorbed A1 domain, and is also of likely relevance for blood-contacting biomaterials.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd