Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/avs/journal/bip/11/2/10.1116/1.4943618
1.
1. D. G. Castner and B. D. Ratner, Surf. Sci. 500, 28 (2002).
http://dx.doi.org/10.1016/S0039-6028(01)01587-4
2.
2. T. A. Horbett, ACS Symp. Ser. 602, 1 (1995).
3.
3. M. B. Gorbet and M. V. Sefton, Biomaterials 25, 5681 (2004).
http://dx.doi.org/10.1016/j.biomaterials.2004.01.023
4.
4. M. Joner et al., J. Am. Coll. Cardiol. 48, 193 (2006).
http://dx.doi.org/10.1016/j.jacc.2006.03.042
5.
5. P. Paulinska, A. Spiel, and B. Jilma, Hamostaseologie 29, 32 (2009).
6.
6. J. E. Sadler, J. Thromb. Haemostasis 7, 24 (2009).
http://dx.doi.org/10.1111/j.1538-7836.2009.03375.x
7.
7. S. Miura, C. Q. Li, Z. Cao, H. Wang, M. R. Wardell, and J. E. Sadler, J. Biol. Chem. 275, 7539 (2000).
http://dx.doi.org/10.1074/jbc.275.11.7539
8.
8. J. J. Dumas, R. Kumar, T. McDonagh, F. Sullivan, M. L. Stahl, W. S. Somers, and L. Mosyak, J. Biol. Chem. 279, 23327 (2004).
http://dx.doi.org/10.1074/jbc.M401659200
9.
9. E. G. Huizinga, S. Tsuji, R. A. Romijn, M. E. Schiphorst, P. G. de Groot, J. J. Sixma, and P. Gros, Science 297, 1176 (2002).
http://dx.doi.org/10.1126/science.107355
10.
10. S. Goto, Y. Ikeda, E. Saldivar, and Z. M. Ruggeri, J. Clin. Invest. 101, 479 (1998).
http://dx.doi.org/10.1172/JCI973
11.
11. H. Shankaran, P. Alexandridis, and S. Neelamegham, Blood 101, 2637 (2003).
http://dx.doi.org/10.1182/blood-2002-05-1550
12.
12. B. Savage, E. Saldivar, and Z. M. Ruggeri, Cell 84, 289 (1996).
http://dx.doi.org/10.1016/S0092-8674(00)80983-6
13.
13. D. A. Beacham, R. J. Wise, S. M. Turci, and R. I. Handin, J. Biol. Chem. 267, 3409 (1992).
14.
14. S. W. Schneider, S. Nuschele, A. Wixforth, C. Gorzelanny, A. Alexander-Katz, R. R. Netz, and M. F. Schneider, Proc. Natl. Acad. Sci. U. S. A. 104, 7899 (2007).
http://dx.doi.org/10.1073/pnas.0608422104
15.
15. P. J. Lenting, J. N. Pegon, E. Groot, and P. G. Groot, Thromb. Haemostasis 104, 449 (2010).
http://dx.doi.org/10.1160/TH09-11-0777
16.
16. T. Yago et al., J. Clin. Invest. 118, 3195 (2008).
http://dx.doi.org/10.1172/JCI35754
17.
17. M. De Luca, D. A. Facey, E. J. Favaloro, M. S. Hertzberg, J. C. Whisstock, T. McNally, R. K. Andrews, and M. C. Berndt, Blood 95, 164 (2000).
18.
18. S. Miyata and Z. M. Ruggeri, J. Biol. Chem. 274, 6586 (1999).
http://dx.doi.org/10.1074/jbc.274.10.6586
19.
19. R. A. Kumar, J. F. Dong, J. A. Thaggard, M. A. Cruz, J. A. Lopez, and L. V. McIntire, Biophys. J. 85, 4099 (2003).
http://dx.doi.org/10.1016/S0006-3495(03)74822-X
20.
20. T. Weidner and D. G. Castner, Phys. Chem. Chem. Phys. 15, 12516 (2013).
http://dx.doi.org/10.1039/c3cp50880c
21.
21. R. Michel, S. Pasche, M. Textor, and D. G. Castner, Langmuir 21, 12327 (2005).
http://dx.doi.org/10.1021/la051726h
22.
22. L. Cao, M. Chang, C.-Y. Lee, D. G. Castner, S. Sukavaneshvar, B. D. Ratner, and T. A. Horbett, J. Biomed. Mater. Res., Part A 81A, 827 (2007).
http://dx.doi.org/10.1002/jbm.a.31091
23.
23. B. Sivaraman, K. P. Fears, and R. A. Latour, Langmuir 25, 3050 (2009).
http://dx.doi.org/10.1021/la8036814
24.
24. D. R. Davies, E. A. Padlan, and S. Sheriff, Annu. Rev. Biochem. 59, 439 (1990).
http://dx.doi.org/10.1146/annurev.bi.59.070190.002255
25.
25. F. Cheng, L. J. Gamble, and D. G. Castner, Anal. Chem. 80, 2564 (2008).
http://dx.doi.org/10.1021/ac702380w
26.
26. H. Wang, D. G. Castner, B. D. Ratner, and S. Jiang, Langmuir 20, 1877 (2004).
http://dx.doi.org/10.1021/la035376f
27.
27. J.-B. Lhoest, E. Detrait, P. V. D. B. D. Aguilar, and P. Bertrand, J. Biomed. Mater. Res. 41, 95 (1998).
http://dx.doi.org/10.1002/(SICI)1097-4636(199807)41:1<95::AID-JBM12>3.0.CO;2-G
28.
28. M. Henry, C. Dupont-Gillain, and P. Bertrand, Langmuir 19, 6271 (2003).
http://dx.doi.org/10.1021/la034081z
29.
29. M. L. Godek, R. Michel, L. M. Chamberlain, D. G. Castner, and D. W. Grainger, J. Biomed. Mater. Res., Part A 88A, 503 (2009).
http://dx.doi.org/10.1002/jbm.a.31886
30.
30. N. Xia, C. J. May, S. L. McArthur, and D. G. Castner, Langmuir 18, 4090 (2002).
http://dx.doi.org/10.1021/la020022u
31.
31. L. H. Stanker, A. V. Serban, E. Cleveland, R. Hnasko, A. Lemus, J. Safar, S. J. De Armond, and S. B. Prusiner, J. Immunol. 185, 729 (2010).
http://dx.doi.org/10.4049/jimmunol.0902930
32.
32. C. Y. Song, W. L. Chen, M. C. Yang, J. P. Huang, and S. J. T. Mao, J. Biol. Chem. 280, 3574 (2005).
http://dx.doi.org/10.1074/jbc.M407031200
33.
33. R. Michel and D. G. Castner, Surf. Interface Anal. 38, 1386 (2006).
http://dx.doi.org/10.1002/sia.2382
34.
34. L. Baugh, T. Weidner, J. E. Baio, P.-C. T. Nguyen, L. J. Gamble, P. S. Stayton, and D. G. Castner, Langmuir 26, 16434 (2010).
http://dx.doi.org/10.1021/la1007389
35.
35. F. Liu, M. Dubey, H. Takahashi, D. G. Castner, and D. W. Grainger, Anal. Chem. 82, 2947 (2010).
http://dx.doi.org/10.1021/ac902964q
36.
36. M. Raghavachari, H.-M. Tsai, K. Kottke-Marchant, and R. E. Marchant, Colloids Surf., B 19, 315 (2000).
http://dx.doi.org/10.1016/S0927-7765(00)00140-5
37.
37. I. Kang, M. Raghavachari, C. M. Hofmann, and R. E. Marchant, Thromb. Res. 119, 731 (2007).
http://dx.doi.org/10.1016/j.thromres.2006.06.010
38.
38. J. Emsley, M. Cruz, R. Handin, and R. Liddington, J. Biol. Chem. 273, 10396 (1998).
http://dx.doi.org/10.1074/jbc.273.17.10396
39.
39. S. Goto, D. R. Salomon, Y. Ikeda, and Z. M. Ruggeri, J. Biol. Chem. 270, 23352 (1995).
http://dx.doi.org/10.1074/jbc.270.40.23352
40.
40. J. F. Dong, M. C. Berndt, A. Schade, L. V. McIntire, R. K. Andrews, and J. A. Lopez, Blood 97, 162 (2001).
http://dx.doi.org/10.1182/blood.V97.1.162
41.
41. M. S. Wagner and D. G. Castner, Langmuir 17, 4649 (2001).
http://dx.doi.org/10.1021/la001209t
42.
42. B. D. Ratner and T. A. Horbett, J. Colloid Interface Sci. 83, 630 (1981).
http://dx.doi.org/10.1016/0021-9797(81)90358-1
43.
43. C. D. Tidwell, D. G. Castner, S. L. Golledge, B. D. Ratner, K. Meyer, B. Hagenhoff, and A. Benninghoven, Surf. Interface Anal. 31, 724 (2001).
http://dx.doi.org/10.1002/sia.1101
44.
44. M. S. Wagner, T. A. Horbett, and D. G. Castner, Biomaterials 24, 1897 (2003).
http://dx.doi.org/10.1016/S0142-9612(02)00612-9
45.
45.See supplementary material at http://dx.doi.org/10.1116/1.4943618 for tables of the complete list of amino acid peaks from TOF-SIMS and of elemental compositions from XPS experiments.[Supplementary Material]
46.
46. Z. M. Ruggeri and G. L. Mendolicchio, Circ. Res. 100, 1673 (2007).
http://dx.doi.org/10.1161/01.RES.0000267878.97021.ab
47.
47. B. J. Fredrickson, J. F. Dong, L. V. McIntire, and J. A. Lopez, Blood 92, 3684 (1998).
48.
48. M. S. Wagner, S. L. McArthur, M. Shen, T. A. Horbett, and D. G. Castner, J. Biomater. Sci., Polym. Ed. 13, 407 (2002).
http://dx.doi.org/10.1163/156856202320253938
49.
49. M. Auton, K. E. Sowa, S. M. Smith, E. Sedlak, K. V. Vijayan, and M. A. Cruz, J. Biol. Chem. 285, 22831 (2010).
http://dx.doi.org/10.1074/jbc.M110.103358
50.
50. Y. Zubavichus, A. Shaporenko, M. Grunze, and M. Zharnikov, J. Phys. Chem. B 111, 9803 (2007).
http://dx.doi.org/10.1021/jp073922y
51.
51. G. Cooper, M. Gordon, D. Tulumello, C. Turci, K. Kaznatcheev, and A. P. Hitchcock, J. Electron Spectrosc. Relat. Phenom. 137–140, 795 (2004).
http://dx.doi.org/10.1016/j.elspec.2004.02.102
52.
52. A. P. Hitchcock, C. Morin, Y. M. Heng, R. M. Cornelius, and J. L. Brash, J. Biomater. Sci., Polym. Ed. 13, 919 (2002).
http://dx.doi.org/10.1163/156856202320401960
53.
53. J. E. Baio, T. Weidner, N. T. Samuel, K. McCrea, L. Baugh, P. S. Stayton, and D. G. Castner, J. Vac. Sci. Technol., B 28, C5D1 (2010).
http://dx.doi.org/10.1116/1.3456176
54.
54. G. Polzonetti, C. Battocchio, G. Iucci, M. Dettin, R. Gambaretto, C. Di Bello, and V. Carravetta, Mater. Sci. Eng., C 26, 929 (2006).
http://dx.doi.org/10.1016/j.msec.2005.09.062
55.
55. M. Auton, E. Sedlak, J. Marek, T. Wu, C. Zhu, and M. A. Cruz, Biophys. J. 97, 618 (2009).
http://dx.doi.org/10.1016/j.bpj.2009.05.009
56.
56. T. A. Doggett, G. Girdhar, A. Lawshe, D. W. Schmidtke, I. J. Laurenzi, S. L. Diamond, and T. G. Diacovo, Biophys. J. 83, 194 (2002).
http://dx.doi.org/10.1016/S0006-3495(02)75161-8
57.
57. M. Auton, K. E. Sowa, M. Behymer, and M. A. Cruz, J. Biol. Chem. 287, 14579 (2012).
http://dx.doi.org/10.1074/jbc.M112.348573
58.
58. A. Tischer, M. A. Cruz, and M. Auton, Protein Sci. 22, 1049 (2013).
http://dx.doi.org/10.1002/pro.2294
59.
59. L. Ju, J. F. Dong, M. A. Cruz, and C. Zhu, J. Biol. Chem. 288, 32289 (2013).
http://dx.doi.org/10.1074/jbc.M113.504001
60.
60. L. Ju, Y. Chen, F. Zhou, H. Lu, M. A. Cruz, and C. Zhu, Thromb. Res. 136, 606 (2015).
http://dx.doi.org/10.1016/j.thromres.2015.06.019
61.
61. L. D. Morales, C. Martin, and M. A. Cruz, J. Thromb. Haemostasis 4, 417 (2006).
http://dx.doi.org/10.1111/j.1538-7836.2006.01742.x
62.
62. R. Celikel, Z. M. Ruggeri, and K. I. Varughese, Nat. Struct. Biol. 7, 881 (2000).
http://dx.doi.org/10.1038/79639
63.
63. K. Fukuda, T. Doggett, I. J. Laurenzi, R. C. Liddington, and T. G. Diacovo, Nat. Struct. Mol. Biol. 12, 152 (2005).
http://dx.doi.org/10.1038/nsmb892
64.
64. G. Interlandi and W. Thomas, Proteins 78, 2506 (2010).
http://dx.doi.org/10.1002/prot.22759
65.
65. A. B. Federici, P. M. Mannucci, G. Castaman, L. Baronciani, P. Bucciarelli, M. T. Canciani, A. Pecci, P. J. Lenting, and P. G. De Groot, Blood 113, 526 (2009).
http://dx.doi.org/10.1182/blood-2008-04-152280
66.
66. S. Miyata, S. Goto, A. B. Federici, J. Ware, and Z. M. Ruggeri, J. Biol. Chem. 271, 9046 (1996).
http://dx.doi.org/10.1074/jbc.271.15.9046
67.
67. W. J. Hu, J. W. Eaton, and L. P. Tang, Blood 98, 1231 (2001).
http://dx.doi.org/10.1182/blood.V98.4.1231
68.
68. B. G. Keselowsky, D. M. Collard, and A. J. Garcia, J. Biomed. Mater. Res., A 66A, 247 (2003).
http://dx.doi.org/10.1002/jbm.a.10537
69.
69. B. D. Ratner, J. Biomed. Mater. Res. 27, 283 (1993).
http://dx.doi.org/10.1002/jbm.820270302
70.
70. B. D. Ratner, Biomaterials 28, 5144 (2007).
http://dx.doi.org/10.1016/j.biomaterials.2007.07.035
http://aip.metastore.ingenta.com/content/avs/journal/bip/11/2/10.1116/1.4943618
Loading
/content/avs/journal/bip/11/2/10.1116/1.4943618
Loading

Data & Media loading...

Abstract

The clotting protein von Willebrand factor (VWF) binds to platelet receptor glycoprotein Ibα (GPIbα) when VWF is activated by chemicals, high shear stress, or immobilization onto surfaces. Activation of VWF by surface immobilization is an important problem in the failure of cardiovascular implants, but is poorly understood. Here, the authors investigate whether some or all surfaces can activate VWF at least in part by affecting the orientation or conformation of the immobilized GPIbα-binding A1 domain of VWF. Platelets binding to A1 adsorbed onto polystyrene surfaces translocated rapidly at moderate and high flow, but detached at low flow, while platelets binding to A1 adsorbed onto glass or tissue-culture treated polystyrene surfaces translocated slowly, and detached only at high flow. Both x-ray photoelectron spectroscopy and conformation independent antibodies reported comparable A1 amounts on all surfaces. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) and near-edge x-ray absorption fine structure spectra suggested differences in orientation on the three surfaces, but none that could explain the biological data. Instead, ToF-SIMS data and binding of conformation-dependent antibodies were consistent with the stabilization of an alternative more activated conformation of A1 by tissue culture polystyrene and especially glass. These studies demonstrate that different materialsurfaces differentially affect the conformation of adsorbed A1 domain and its biological activity. This is important when interpreting or designing experiments with surface-adsorbed A1 domain, and is also of likely relevance for blood-contacting biomaterials.

Loading

Full text loading...

/deliver/fulltext/avs/journal/bip/11/2/1.4943618.html;jsessionid=cQiaPNEJvf9-jZYYshwa7A6E.x-aip-live-02?itemId=/content/avs/journal/bip/11/2/10.1116/1.4943618&mimeType=html&fmt=ahah&containerItemId=content/avs/journal/bip
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=avspublications.org/11/2/10.1116/1.4943618&pageURL=http://scitation.aip.org/content/avs/journal/bip/11/2/10.1116/1.4943618'
Right1,Right2,Right3,