Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/avs/journal/bip/11/2/10.1116/1.4944830
1.
1. M. Eeman and M. Deleu, Biotechnol. Agron. Soc. 14, 719 (2010), available at http://popups.ulg.ac.be/1780-4507/index.php?id=6568.
2.
2. Y. H. Chan and S. G. Boxer, Curr. Opin. Chem. Biol. 11, 581 (2007).
http://dx.doi.org/10.1016/j.cbpa.2007.09.020
3.
3. T. G. Pomorski, T. Nylander, and M. Cardenas, Adv. Colloid Interface Sci. 205, 207 (2014).
http://dx.doi.org/10.1016/j.cis.2013.10.028
4.
4. K. B. Blodgett, J. Am. Chem. Soc. 57, 1007 (1935).
http://dx.doi.org/10.1021/ja01309a011
5.
5. A. V. Hughes, S. J. Roser, M. Gerstenberg, A. Goldar, B. Stidder, R. Feidenhans'l, and J. Bradshaw, Langmuir 18, 8161 (2002).
http://dx.doi.org/10.1021/la025765u
6.
6. L. A. Clifton, M. W. Skoda, E. L. Daulton, A. V. Hughes, A. P. Le Brun, J. H. Lakey, and S. A. Holt, J. R. Soc. Interface 10, 2013081 (2013).
http://dx.doi.org/10.1098/rsif.2013.0810
7.
7. H. P. Vacklin, F. Tiberg, and R. K. Thomas, Biochim. Biophys. Acta 1668, 17 (2005).
http://dx.doi.org/10.1016/j.bbamem.2004.11.001
8.
8. M. Ollivon, S. Lesieur, C. Grabielle-Madelmont, and M. Paternostre, Biochim. Biophys. Acta 1508, 34 (2000).
http://dx.doi.org/10.1016/S0304-4157(00)00006-X
9.
9. R. P. Richter and A. R. Brisson, Biophys. J. 88, 3422 (2005).
http://dx.doi.org/10.1529/biophysj.104.053728
10.
10. R. Richter, A. Mukhopadhyay, and A. Brisson, Biophys. J. 85, 3035 (2003).
http://dx.doi.org/10.1016/S0006-3495(03)74722-5
11.
11. A. Åkesson, T. Lind, N. Ehrlich, D. Stamou, H. Wacklin, and M. Cárdenas, Soft Matter 8, 5658 (2012).
http://dx.doi.org/10.1039/c2sm00013j
12.
12. T. K. Lind, M. Cardenas, and H. P. Wacklin, Langmuir 30, 7259 (2014).
http://dx.doi.org/10.1021/la500897x
13.
13. V. Rondelli, G. Fragneto, S. Motta, E. D. Favero, and L. Cantù, J. Phys.: Condens. Ser. 340, 012083 (2012), available at http://stacks.iop.org/1742-6596/340/i=1/a=012083.
14.
14. K. Funakoshi, H. Suzuki, and S. Takeuchi, Anal. Chem. 78, 8169 (2006).
http://dx.doi.org/10.1021/ac0613479
15.
15. G. J. Taylor and S. A. Sarles, Langmuir 31, 325 (2015).
http://dx.doi.org/10.1021/la503471m
16.
16. W. L. Hwang, M. Chen, B. D. Cronin, M. A. Holden, and H. Bayley, J. Am. Chem. Soc. 130, 5878 (2008).
http://dx.doi.org/10.1021/ja802089s
17.
17. A. Fischer, M. A. Holden, B. L. Pentelute, and R. J. Collier, Proc. Natl. Acad. Sci. U.S.A. 108, 16577 (2011).
http://dx.doi.org/10.1073/pnas.1113074108
18.
18. L. Bradshaw, RF Time Freq. 8, 50 (2008).
19.
19.Biolin Scientific, Q-Sense Sensors.
20.
20. K. K. Kanazawa and J. G. Gordon, Anal. Chim. Acta 175, 99 (1985).
http://dx.doi.org/10.1016/S0003-2670(00)82721-X
21.
21. G. Sauerbrey, Z. Phys. 155, 206 (1959).
http://dx.doi.org/10.1007/BF01337937
22.
22. M. Rodahl, F. Hoüoük, A. Krozer, P. Brzezinski, and B. Kasemo, Rev. Sci. Instrum. 66, 3924 (1995).
http://dx.doi.org/10.1063/1.1145396
23.
23. A. Mechler, S. Praporski, K. Atmuri, M. Boland, F. Separovic, and L. L. Martin, Biophys. J. 93, 3907 (2007).
http://dx.doi.org/10.1529/biophysj.107.116525
24.
24. M. V. Voinova, M. Rodahl, M. Jonson, and B. Kasemo, Phys. Scr. 59, 391 (1999).
http://dx.doi.org/10.1238/Physica.Regular.059a00391
25.
25. D. D. Joseph, Fluid Dynamics of Viscoelastic Liquids ( Springer, New York, 1990).
26.
26. E. Tellechea, D. Johannsmann, N. F. Steinmetz, R. P. Richter, and I. Reviakine, Langmuir 25, 5177 (2009).
http://dx.doi.org/10.1021/la803912p
27.
27.Q-Sense, “Quartz crystal microbalance with dissipation monitoring (QCM-D),” Q-sense Technology Note: QS 407-01-2 (2014).
28.
28. C. Striebel, A. Brecht, and G. Gauglitz, Biosens. Bioelectron. 9, 139 (1994).
http://dx.doi.org/10.1016/0956-5663(94)80105-3
29.
29. F. Höök, B. Kasemo, T. Nylander, C. Fant, K. Sott, and H. Elwing, Anal. Chem. 73, 5796 (2001).
http://dx.doi.org/10.1021/ac0106501
30.
30. N. J. Cho, C. W. Frank, B. Kasemo, and F. Hook, Nat. Protoc. 5, 1096 (2010).
http://dx.doi.org/10.1038/nprot.2010.65
31.
31. K. F. Wang, R. Nagarajan, and T. A. Camesano, Biophys. Chem. 196, 53 (2015).
http://dx.doi.org/10.1016/j.bpc.2014.09.003
32.
32. N. Y. Lu, K. Yang, J. L. Li, B. Yuan, and Y. Q. Ma, Biochim. Biophys. Acta 1828, 1918 (2013).
http://dx.doi.org/10.1016/j.bbamem.2013.04.013
33.
33. N. Lu, K. Yang, B. Yuan, and Y. Ma, J. Phys. Chem. B 116, 9432 (2012).
http://dx.doi.org/10.1021/jp305141r
34.
34. E. Reimhult, F. Höök, and B. Kasemo, Langmuir 19, 1681 (2003).
http://dx.doi.org/10.1021/la0263920
35.
35. J. A. Zasadzinski, C. A. Helm, M. L. Longo, A. L. Weisenhorn, S. A. Gould, and P. K. Hansma, Biophys. J. 59, 755 (1991).
http://dx.doi.org/10.1016/S0006-3495(91)82288-3
36.
36. Q. Zhong, D. Inniss, K. Kjoller, and V. B. Elings, Surf. Sci. 290, L688 (1993).
http://dx.doi.org/10.1016/0039-6028(93)90582-5
37.
37.Bruker Nano Surfaces Divison, “ Quantitative mechanical property mapping at the nanoscale with PeakForce QNM,” Application Note No. 128 (2012).
38.
38. M. P. Mingeot-Leclercq, M. Deleu, R. Brasseur, and Y. F. Dufrene, Nat. Protoc. 3, 1654 (2008).
http://dx.doi.org/10.1038/nprot.2008.149
39.
39. T. K. Lind, P. Zielinska, H. P. Wacklin, Z. Urbanczyk-Lipkowska, and M. Cardenas, ACS Nano 8, 396 (2014).
http://dx.doi.org/10.1021/nn404530z
40.
40. G. Fragneto, Eur. Phys. J.: Spec. Top. 213, 327 (2012).
http://dx.doi.org/10.1140/epjst/e2012-01680-5
41.
41. G. Fragneto-Cusani, J. Phys.-Condens. Matter 13, 4973 (2001).
http://dx.doi.org/10.1088/0953-8984/13/21/322
42.
42. S. Maric et al., Appl. Microbiol. Biotechnol. 99, 241 (2015).
http://dx.doi.org/10.1007/s00253-014-6082-z
43.
43. T. Salditt, Curr. Opin. Struct. Biol. 13, 467 (2003).
http://dx.doi.org/10.1016/S0959-440X(03)00113-1
44.
44. I. Burgess, M. Li, S. L. Horswell, G. Szymanski, J. Lipkowski, J. Majewski, and S. Satija, Biophys. J. 86, 1763 (2004).
http://dx.doi.org/10.1016/S0006-3495(04)74244-7
45.
45. R. P. Richter, R. Berat, and A. R. Brisson, Langmuir 22, 3497 (2006).
http://dx.doi.org/10.1021/la052687c
46.
46. B. Seantier, C. Breffa, O. Felix, and G. Decher, J. Phys. Chem. B. 109, 21755 (2005).
http://dx.doi.org/10.1021/jp053482f
47.
47. Y. Jing, H. Trefna, M. Persson, B. Kasemo, and S. Svedhem, Soft Matter 10, 187 (2014).
http://dx.doi.org/10.1039/C3SM50947H
48.
48. T. K. Lind, “ Understanding peptide dendrimer interactions with model cell membrane mimics,” Ph.D. thesis ( Copenhagen University, 2014).
49.
49. C. A. Keller and B. Kasemo, Biophys. J. 75, 1397 (1998).
http://dx.doi.org/10.1016/S0006-3495(98)74057-3
50.
50. B. Seantier, C. Breffa, O. Félix, and G. Decher, Nano Lett. 4, 5 (2004).
http://dx.doi.org/10.1021/nl034590l
51.
51. M. Beckmann, P. Nollert, and H. A. Kolb, J. Membr. Biol. 161, 227 (1998).
http://dx.doi.org/10.1007/s002329900329
52.
52. E. Reimhult, F. Hook, and B. Kasemo, J. Chem. Phys. 117, 7401 (2002).
http://dx.doi.org/10.1063/1.1515320
53.
53. C. A. Keller, K. Glasmastar, V. P. Zhdanov, and B. Kasemo, Phys. Rev. Lett. 84, 5443 (2000).
http://dx.doi.org/10.1103/PhysRevLett.84.5443
54.
54. S. Stanglmaier, S. Hertrich, K. Fritz, J. F. Moulin, M. Haese-Seiller, J. O. Rädler, and B. Nickel, Langmuir 28, 10818 (2012).
http://dx.doi.org/10.1021/la3019887
55.
55. H. P. Wacklin, Langmuir 27, 7698 (2011).
http://dx.doi.org/10.1021/la200683e
56.
56. H. P. Wacklin and R. K. Thomas, Langmuir 23, 7644 (2007).
http://dx.doi.org/10.1021/la063476q
57.
57. W. C. Lin, C. D. Blanchette, T. V. Ratto, and M. L. Longo, Biophys. J. 90, 228 (2006).
http://dx.doi.org/10.1529/biophysj.105.067066
58.
58. F. F. Rossetti, M. Textor, and I. Reviakine, Langmuir 22, 3467 (2006).
http://dx.doi.org/10.1021/la053000r
59.
59. R. P. Richter, N. Maury, and A. R. Brisson, Langmuir 21, 299 (2005).
http://dx.doi.org/10.1021/la0478402
60.
60. S. D. Shoemaker and T. K. Vanderlick, Biophys. J. 84, 998 (2003).
http://dx.doi.org/10.1016/S0006-3495(03)74916-9
61.
61. W. Curatolo, B. Sears, and L. J. Neuringer, Biochim. Biophys. Acta 817, 261 (1985).
http://dx.doi.org/10.1016/0005-2736(85)90027-6
62.
62. H. A. Rinia and B. de Kruijff, FEBS Lett. 504, 194 (2001).
http://dx.doi.org/10.1016/S0014-5793(01)02704-1
63.
63. J. Larsen, N. S. Hatzakis, and D. Stamou, J. Am. Chem. Soc. 133, 10685 (2011).
http://dx.doi.org/10.1021/ja203984j
64.
64. G. F. White, K. I. Racher, A. Lipski, F. R. Hallett, and J. M. Wood, Biochim. Biophys. Acta. 1468, 175 (2000).
http://dx.doi.org/10.1016/S0005-2736(00)00255-8
65.
65. I. Lopez-Montero, L. R. Arriaga, G. Rivas, M. Velez, and F. Monroy, Chem. Phys. Lipids. 163, 56 (2010).
http://dx.doi.org/10.1016/j.chemphyslip.2009.10.002
66.
66. E. J. Prenner, R. N. Lewis, K. C. Neuman, S. M. Gruner, L. H. Kondejewski, R. S. Hodges, and R. N. McElhaney, Biochemistry 36, 7906 (1997).
http://dx.doi.org/10.1021/bi962785k
67.
67. C. Roos et al., Biochim. Biophys. Acta 1818, 3098 (2012).
http://dx.doi.org/10.1016/j.bbamem.2012.08.007
68.
68. P. Nollert, H. Kiefer, and F. Jahnig, Biophys. J. 69, 1447 (1995).
http://dx.doi.org/10.1016/S0006-3495(95)80014-7
69.
69. C. E. Dodd, B. R. Johnson, L. J. Jeuken, T. D. Bugg, R. J. Bushby, and S. D. Evans, Biointerphases 3, FA59 (2008).
http://dx.doi.org/10.1116/1.2896113
70.
70. N. Ruiz, S. Merino, M. Vinas, O. Domenech, M. T. Montero, and J. Hernandez-Borrell, Biophys. Chem. 111, 1 (2004).
http://dx.doi.org/10.1016/j.bpc.2004.03.006
71.
71. S. Merino, Ò. Domènech, I. Díez, F. Sanz, M. Viñas, M. T. Montero, and J. Hernández-Borrell, Langmuir 19, 6922 (2003).
http://dx.doi.org/10.1021/la034232y
72.
72. S. Garcia-Manyes, G. Oncins, and F. Sanz, Biophys. J. 89, 1812 (2005).
http://dx.doi.org/10.1529/biophysj.105.064030
73.
73. Ò. Domènech, S. Merino-Montero, M. T. Montero, and J. Hernandez-Borrell, Colloids Surf., B 47, 102 (2006).
http://dx.doi.org/10.1016/j.colsurfb.2005.11.025
74.
74. C. Merz, W. Knoll, M. Textor, and E. Reimhult, Biointerphases 3, FA41 (2008).
http://dx.doi.org/10.1116/1.2896119
75.
75. A. de Ghellinck, G. Fragneto, V. Laux, M. Haertlein, J. Jouhet, M. Sferrazza, and H. Wacklin, Biochim. Biophys. Acta 1848, 2317 (2015).
http://dx.doi.org/10.1016/j.bbamem.2015.06.006
76.
76. T. K. Lind, H. Wacklin, J. Schiller, M. Moulin, M. Haertlein, T. G. Pomorski, and M. Cardenas, PLoS One 10, e0144671 (2015).
http://dx.doi.org/10.1371/journal.pone.0144671
77.
77. K. R. Pandit and J. B. Klauda, Biochim. Biophys. Acta 1818, 1205 (2012).
http://dx.doi.org/10.1016/j.bbamem.2012.01.009
78.
78. L. A. Clifton et al., Angew. Chem. Int. Ed. Engl. 54, 11952 (2015).
http://dx.doi.org/10.1002/anie.201504287
79.
79. A. de Ghellinck, H. Schaller, V. Laux, M. Haertlein, M. Sferrazza, E. Maréchal, H. Wacklin, J. Jouhet, and G. Fragneto, PLoS One 9, e92999 (2014).
http://dx.doi.org/10.1371/journal.pone.0092999
80.
80. A. Åkesson, C. V. Lundgaard, N. Ehrlich, T. G. Pomorski, D. Stamou, and M. Cárdenas, Soft Matter 8, 8972 (2012).
http://dx.doi.org/10.1039/c2sm25864a
http://aip.metastore.ingenta.com/content/avs/journal/bip/11/2/10.1116/1.4944830
Loading
/content/avs/journal/bip/11/2/10.1116/1.4944830
Loading

Data & Media loading...

Abstract

In this review, the authors discuss the challenges of studying supported lipid bilayers (SLBs) deposited by vesicle fusion in terms of (1) evaluating SLB formation and quality using quartz crystal microbalance with dissipation and (2) analyzing the composition and asymmetry of SLBs composed by lipid mixtures using complementary surface sensitive techniques. An overview of the literature is presented and the inconsistencies on this topic are discussed with the objective to expand beyond simple lipid compositions and set the basis for forming and analyzing SLBs of complex natural lipid extracts formed via the vesicle fusion method. The authors conclude by providing some guidelines to successfully form SLBs of complex lipid mixtures including natural extracts.

Loading

Full text loading...

/deliver/fulltext/avs/journal/bip/11/2/1.4944830.html;jsessionid=toFMlFcJKQ7h7xec6r62DiMm.x-aip-live-06?itemId=/content/avs/journal/bip/11/2/10.1116/1.4944830&mimeType=html&fmt=ahah&containerItemId=content/avs/journal/bip
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=avspublications.org/11/2/10.1116/1.4944830&pageURL=http://scitation.aip.org/content/avs/journal/bip/11/2/10.1116/1.4944830'
Right1,Right2,Right3,