Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. S. Hofmann, Surf. Interface Anal. 46, 654 (2014).
2. R. Barbey, V. Laporte, S. Alnabulsi, and H.-A. Klok, Macromolecules 46, 6151 (2013).
3. A. G. Shard, S. Ray, M. P. Seah, and L. Yang, Surf Interface Anal. 43, 1240 (2011).
4. I. Yamada, J. Matsuo, N. Toyoda, and A. Kirkpatrick, Mater. Sci. Eng.: R 34, 231 (2001).
5. T. Miyayama, N. Sanada, M. Suzuki, J. S. Hammond, S.-Q. D. Si, and A. Takahara, J. Vac. Sci. Technol., A 28, L1 (2010).
6. T. Miyayama, N. Sanada, S. R. Bryan, J. S. Hammond, and M. Suzuki, Surf. Interface Anal. 42, 1453 (2010).
7. S. Ninomiya, K. Ichiki, H. Yamada, Y. Nakata, T. Seki, T. Aoki, and J. Matsuo, Surf. Interface Anal. 43, 221 (2011).
8. P. J. Cumpson, J. F. Portoles, N. Sano, and A. J. Barlow, J. Appl. Phys. 114, 124313 (2013).
9. P. J. Cumpson, J. F. Portoles, and N. Sano, Surf. Interface Anal. 45, 601 (2013).
10. P. J. Cumpson, J. F. Portoles, and N. Sano, J. Vac. Sci. Technol. A 31, 020605 (2013).
11. P. J. Cumpson, J. F. Portoles, N. Sano, and A. J. Barlow, J. Vac. Sci. Technol. B 31, 021208 (2013).
12. O. A. Restrepo and A. Delcorte, J. Phys. Chem. C 117, 1189 (2013).
13. D.-J. Yun, J. Chung, C. Jung, K.-H. Kim, W. Baek, H. Han, B. Anass, G.-S. Park, and S.-H. Park, J. Appl. Phys. 114, 013703 (2013).
14. N. C. Erickson, S. N. Raman, J. S. Hammond, and R. J. Holmes, Org. Electron. 15, 2988 (2014).
15. P. J. Cumpson, J. F. Portoles, A. J. Barlow, N. Sano, and M. Birch, Surf. Interface Anal. 45, 1859 (2013).
16.See supplementary material at for a detailed description of the used materials, methods and synthetic procedures.[Supplementary Material]
17. C. Funk, P. M. Dietrich, T. Gross, H. Min, W. E. S. Unger, and W. Weigel, Surf. Interface Anal. 44, 890 (2012).
18. C. Nietzold, P. M. Dietrich, S. Ivanov-Pankov, A. Lippitz, T. Gross, W. Weigel, and W. E. S. Unger, Surf. Interface Anal. 46, 668 (2014).
19. C. Nietzold, P. M. Dietrich, A. Lippitz, U. Panne, and W. E. S. Unger, “ Cyclodextrin – ferrocene host – guest complexes on silicon oxide surfaces,” Surf. Interface Anal. (published online).
20.The film thickness was determined by white-light interferometric microscopy (WLIM). See supplementary material for details. For the layer of native silicon oxide (SiO2) on top of the silicon substrate a thickness of (1.7 ± 0.5) nm was calculated from the measured oxygen mass deposition using reference free total reflection x-ray fluorescence (Ref. 21).
21. P. M. Dietrich, C. Streeck, S. Glamsch, C. Ehlert, A. Lippitz, A. Nutsch, N. Kulak, B. Beckhoff, and W. E. S. Unger, Anal. Chem. 87, 10117 (2015).
22.The interface position was estimated following Sect. 5.3 of ISO 17109:2015 Surface Chemical Analysis—Depth Profiling—A method for ion sputter rate determination in x-ray photoelectron spectroscopy, Auger electron spectroscopy, and secondary ion mass spectrometry sputter depth profiling using single and multilayer thin films.
23.95% information depth, z95, which corresponds to the sample thickness from which 95% of the detected signal (here measured by XPS) originates; this depth is called information depth in the ISO Vocabulary (ISO 18115-1:2010, term 5.246) and is described by z95 = 3Lcos(theta), with theta the angle of emission and L the electron attenuation length.

Data & Media loading...


The growing interest in artificial bioorganic interfaces as a platform for applications in emerging areas as personalized medicine, clinical diagnostics, biosensing, biofilms, prevention of biofouling, and other fields of bioengineering is the origin of a need for in detail multitechnique characterizations of such layers and interfaces. The in-depth analysis of biointerfaces is of special interest as the properties of functional bioorganic coatings can be dramatically affected by in-depth variations of composition. In worst cases, the functionality of a device produced using such coatings can be substantially reduced or even fully lost.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd