Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
M. A. Walling and J. R. E. Shepard, Chem. Soc. Rev. 40, 4049 (2011).
N. Jain, K. V. Iyer, A. Kumar, and G. V. Shivashankar, Proc. Natl. Acad. Sci. 110, 11349 (2013).
K. A. Kilian, B. Bugarija, B. T. Lahn, and M. Mrksich, Proc. Natl. Acad. Sci. 107, 4872 (2010).
X. Jiang, D. A. Bruzewicz, A. P. Wong, M. Piel, and G. M. Whitesides, Proc. Natl. Acad. Sci. 102, 975 (2005).
N. Patrito, C. McCague, P. R. Norton, and N. O. Petersen, Langmuir 23, 715 (2007).
H. W. Shim, J. H. Lee, T. S. Hwang, Y. W. Rhee, Y. M. Bae, J. S. Choi, J. Han, and C. S. Lee, Biosens. Bioelectron. 22, 3188 (2007).
B. J. Spargo, M. A. Testoff, T. B. Nielsen, D. A. Stenger, J. J. Hickman, and A. S. Rudolph, Proc. Natl. Acad. Sci. 91, 11070 (1994).
M. Matsuzawa, R. S. Potember, D. A. Stenger, and V. Krauthamer, J. Neurosci. Methods 50, 253 (1993).
R. Singhvi, A. Kumar, G. P. Lopez, G. N. Stephanopoulos, D. I. Wang, G. M. Whitesides, and D. E. Ingber, Science 264, 696 (1994).
G. P. Lopez, M. W. Albers, S. L. Schreiber, R. Carroll, E. Peralta, and G. M. Whitesides, J. Am. Chem. Soc. 115, 5877 (1993).
G. Jing, Y. Wang, T. Zhou, S. F. Perry, M. T. Grimes, and S. Tatic-Lucic, Acta Biomater. 7, 1094 (2011).
D.-S. Shin, J. Hyun Seo, J. L. Sutcliffe, and A. Revzin, Chem. Commun. 47, 11942 (2011).
C. M. Kolodziej, S. H. Kim, R. M. Broyer, S. S. Saxer, C. G. Decker, and H. D. Maynard, J. Am. Chem. Soc. 134, 247 (2012).
S. P. Garland, C. T. McKee, Y. R. Chang, V. K. Raghunathan, P. Russell, and C. J. Murphy, Langmuir 30, 2101 (2014).
H. Ma, J. Hyun, Z. Zhang, T. P. Beebe, and A. Chilkoti, Adv. Funct. Mater. 15, 529 (2005).
J. Hyun, H. Ma, P. Banerjee, J. Cole, K. Gonsalves, and A. Chilkoti, Langmuir 18, 2975 (2002).
Z. Yang and A. Chilkoti, Adv. Mater. 12, 413 (2000).<413::AID-ADMA413>3.0.CO;2-#
H. Ma, J. Hyun, P. Stiller, and A. Chilkoti, Adv. Mater. 16, 338 (2004).
H. Ma, D. Li, X. Sheng, B. Zhao, and A. Chilkoti, Langmuir 22, 3751 (2006).
H. Ma, M. Wells, T. P. Beebe, and A. Chilkoti, Adv. Funct. Mater. 16, 640 (2006).
A. Hucknall, A. J. Simnick, R. T. Hill, A. Chilkoti, A. Garcia, M. S. Johannes, R. L. Clark, S. Zauscher, and B. D. Ratner, Biointerphases 4, FA50 (2009).
R. S. Kane, S. Takayama, E. Ostuni, D. E. Ingber, and G. M. Whitesides, Biomaterials 20, 2363 (1999).
A. Revzin, R. G. Tompkins, and M. Toner, Langmuir 19, 9855 (2003).
M. Veiseh, B. T. Wickes, D. G. Castner, and M. Zhang, Biomaterials 25, 3315 (2004).
Z. Nie and E. Kumacheva, Nat. Mater. 7, 277 (2008).
E. Wang, M. S. Desai, K. Heo, and S. W. Lee, Langmuir 30, 2223 (2014).
R. A. Latour, in Encyclopedia of Biomaterials and Biomedical Engineering ( Taylor & Francis, New York, 2013), p. 270.
C. D. Bain, E. B. Troughton, Y. T. Tao, J. Evall, G. M. Whitesides, and R. G. Nuzzo, J. Am. Chem. Soc. 111, 321 (1989).
U. Hersel, C. Dahmen, and H. Kessler, Biomaterials 24, 4385 (2003).
E. Ruoslahti, Annu. Rev. Cell Dev. Biol. 12, 697 (1996).
A. Nicol, D. Channe Gowda, and D. W. Urry, J. Biomed. Mater. Res. 26, 393 (1992).
A. Krukau and I. Brovchenko, Biomacromolecules 8, 2196 (2007).
S. Roberts, M. Dzuricky, and A. Chilkoti, FEBS Lett. 589, 2477 (2015).
X. Yao and M. Hong, J. Am. Chem. Soc. 126, 4199 (2004).
M. S. Pometun, E. Y. Chekmenev, and R. J. Wittebort, J. Biol. Chem. 279, 7982 (2004).
D. W. Urry, Prog. Biophys. Mol. Biol. 57, 23 (1992).
D. W. Urry, J. Phys. Chem. B 101, 11007 (1997).
M. Hnilova, D. Khatayevich, A. Carlson, E. E. Oren, C. Gresswell, S. Zheng, F. Ohuchi, M. Sarikaya, and C. Tamerler, J. Colloid Interface Sci. 365, 97 (2012).
T. Kacar, J. Ray, M. Gungormus, E. E. Oren, C. Tamerler, and M. Sarikaya, Adv. Mater. 21, 295 (2009).
T. Kacar, M. T. Zin, C. So, B. Wilson, H. Ma, N. Gul-Karaguler, A. K.-Y. Jen, M. Sarikaya, and C. Tamerler, Biotechnol. Bioeng. 103, 696 (2009).
J. H. Wei, T. Kacar, C. Tamerler, M. Sarikaya, and D. S. Ginger, Small 5, 689 (2009).
A. Sengupta, C. K. Thai, M. S. R. Sastry, J. F. Matthaei, D. T. Schwartz, E. J. Davis, and F. Baneyx, Langmuir 24, 2000 (2008).
N. Yokoo et al., J. Phys. Chem. B 114, 480 (2010).
K. S. Straley and S. C. Heilshorn, Front. Neuroeng. 2, 9 (2009).
D. Kurzbach, W. Hassouneh, J. R. McDaniel, E. A. Jaumann, A. Chilkoti, and D. Hinderberger, J. Am. Chem. Soc. 135, 11299 (2013).
D. E. Meyer and A. Chilkoti, Nat. Biotechnol. 17, 1112 (1999).
W. Hassouneh, T. Christensen, and A. Chilkoti, “ Unit–6.11 Elastin-like polypeptides as a purification tag for recombinant proteins,” Current Protocols in Protein Science / Editorial Board, edited by John E. Coligan et al. (2010).
J. Andrew MacKay, M. Chen, J. R. McDaniel, W. Liu, A. J. Simnick, and A. Chilkoti, Nat. Mater. 8, 993 (2009).
S. R. MacEwan and A. Chilkoti, J. Controlled Release 190, 314 (2014).
M. Ebara, M. Yamato, T. Aoyagi, A. Kikuchi, K. Sakai, and T. Okano, Adv. Mater. 20, 3034 (2008).
D. E. Meyer and A. Chilkoti, “ Protein purification by inverse transition cycling,” Protein–Protein Interaction: A Molecular Cloning Manual, edited by Erica Golemis ( Cold Spring Harbor Laboratory, New York, 2002), Chap. 18, p. 329.
G. L. Bidwell and D. Raucher, Mol. Cancer Ther. 4, 1076 (2005).
M. Rodahl, F. Höök, C. Fredriksson, C. A. Keller, A. Krozer, P. Brzezinski, M. Voinova, and B. Kasemo, Faraday Discuss. 107, 229 (1997).
M. V. Voinova, M. Rodahl, M. Jonson, and B. Kasemo, Phys. Scr. 59, 391 (1999).
R. Pytela, M. D. Pierschbacher, and E. Ruoslahti, Cell 40, 191 (1985).
R. Pytela, M. D. Pierschbacher, and E. Ruoslahti, Proc. Natl. Acad. Sci. 82, 5766 (1985).
J. E. Koblinski, M. Wu, B. Demeler, K. Jacob, and H. K. Kleinman, J. Cell Sci. 118, 2965 (2005).
S. Sek, A. Misicka, K. Swiatek, and E. Maicka, J. Phys. Chem. B 110, 19671 (2006).
M. A. Case, G. L. McLendon, Y. Hu, T. K. Vanderlick, and G. Scoles, Nano Lett. 3, 425 (2003).
M. Amiram, K. M. Luginbuhl, X. Li, M. N. Feinglos, and A. Chilkoti, J. Controlled Release 172, 144 (2013).
R. J. McMurray et al., Nat. Mater. 10, 637 (2011).
J. C. Chang, G. J. Brewer, and B. C. Wheeler, Biomed. Microdevices 2, 245 (2000).
D. W. Branch, B. C. Wheeler, G. J. Brewer, and D. E. Leckband, IEEE Trans. Biomed. Eng. 47, 290 (2000).
K. Na, J. Jung, O. Kim, J. Lee, T. G. Lee, Y. H. Park, and J. Hyun, Langmuir 24, 4917 (2008).
M. Mie, Y. Mizushima, and E. Kobatake, J. Biomed. Mater. Res. B 86, 283 (2008).
T. Koga, K. Nakamoto, K. Odawara, T. Matsuoka, and N. Higashi, Polymers (Basel) 7, 134 (2015).
M. Sarikaya, C. Tamerler, A. K.-Y. Jen, K. Schulten, and F. Baneyx, Nat. Mater. 2, 577 (2003).
A. M. Belcher, S. R. Whaley, D. S. English, E. L. Hu, and P. F. Barbara, Nature 405, 665 (2000).
T. Togashi, N. Yokoo, M. Umetsu, S. Ohara, T. Naka, S. Takami, H. Abe, I. Kumagai, and T. Adschiri, J. Biosci. Bioeng. 111, 140 (2011).
U. O. S. Seker and H. V. Demir, Molecules 16, 1426 (2011).
C. Tamerler and M. Sarikaya, Philos. Trans., A 367, 1705 (2009).
C. Tamerler, M. Duman, E. E. Oren, M. Gungormus, X. Xiong, T. Kacar, B. A. Parviz, and M. Sarikaya, Small 2, 1372 (2006).
See supplementary material at for details on the setup for controlled washing of cells bound to surfaces, fluorescence intensity analysis of peptide modified substrates, thickness of peptide layers, thermal characterization of RGD-ELP-Cys, and quantitative analysis of cell adhesion behavior on peptide modified surfaces at different temperatures.[Supplementary Material]

Data & Media loading...


Patterning cells on material surfaces is an important tool for the study of fundamental cell biology, tissue engineering, and cell-based bioassays. Here, the authors report a simple approach to pattern cells on gold patterned silicon substrates with high precision, fidelity, and stability. Cell patterning is achieved by exploiting adsorbed biopolymer orientation to either enhance (gold regions) or impede (silicon oxide regions) cell adhesion at particular locations on the patterned surface. Genetic incorporation of gold binding domains enables C-terminal chemisorption of polypeptides onto gold regions with enhanced accessibility of N-terminal cell binding domains. In contrast, the orientation of polypeptides adsorbed on the silicon oxide regions limit the accessibility of the cell binding domains. The dissimilar accessibility of cell binding domains on the gold and silicon oxide regions directs the cell adhesion in a spatially controlled manner in serum-free medium, leading to the formation of well-defined cellular patterns. The cells are confined within the polypeptide-modified gold regions and are viable for eight weeks, suggesting that bioactive polypeptide modified surfaces are suitable for long-term maintenance of patterned cells. This study demonstrates an innovative surface-engineering approach for cell patterning by exploiting distinct ligand accessibility on heterogeneous surfaces.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd