Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/avs/journal/bip/11/2/10.1116/1.4952452
1.
M. A. Walling and J. R. E. Shepard, Chem. Soc. Rev. 40, 4049 (2011).
http://dx.doi.org/10.1039/c0cs00212g
2.
N. Jain, K. V. Iyer, A. Kumar, and G. V. Shivashankar, Proc. Natl. Acad. Sci. 110, 11349 (2013).
http://dx.doi.org/10.1073/pnas.1300801110
3.
K. A. Kilian, B. Bugarija, B. T. Lahn, and M. Mrksich, Proc. Natl. Acad. Sci. 107, 4872 (2010).
http://dx.doi.org/10.1073/pnas.0903269107
4.
X. Jiang, D. A. Bruzewicz, A. P. Wong, M. Piel, and G. M. Whitesides, Proc. Natl. Acad. Sci. 102, 975 (2005).
http://dx.doi.org/10.1073/pnas.0408954102
5.
N. Patrito, C. McCague, P. R. Norton, and N. O. Petersen, Langmuir 23, 715 (2007).
http://dx.doi.org/10.1021/la062007l
6.
H. W. Shim, J. H. Lee, T. S. Hwang, Y. W. Rhee, Y. M. Bae, J. S. Choi, J. Han, and C. S. Lee, Biosens. Bioelectron. 22, 3188 (2007).
http://dx.doi.org/10.1016/j.bios.2007.02.016
7.
B. J. Spargo, M. A. Testoff, T. B. Nielsen, D. A. Stenger, J. J. Hickman, and A. S. Rudolph, Proc. Natl. Acad. Sci. 91, 11070 (1994).
http://dx.doi.org/10.1073/pnas.91.23.11070
8.
M. Matsuzawa, R. S. Potember, D. A. Stenger, and V. Krauthamer, J. Neurosci. Methods 50, 253 (1993).
http://dx.doi.org/10.1016/0165-0270(93)90014-I
9.
R. Singhvi, A. Kumar, G. P. Lopez, G. N. Stephanopoulos, D. I. Wang, G. M. Whitesides, and D. E. Ingber, Science 264, 696 (1994).
http://dx.doi.org/10.1126/science.8171320
10.
G. P. Lopez, M. W. Albers, S. L. Schreiber, R. Carroll, E. Peralta, and G. M. Whitesides, J. Am. Chem. Soc. 115, 5877 (1993).
http://dx.doi.org/10.1021/ja00066a087
11.
G. Jing, Y. Wang, T. Zhou, S. F. Perry, M. T. Grimes, and S. Tatic-Lucic, Acta Biomater. 7, 1094 (2011).
http://dx.doi.org/10.1016/j.actbio.2010.09.040
12.
D.-S. Shin, J. Hyun Seo, J. L. Sutcliffe, and A. Revzin, Chem. Commun. 47, 11942 (2011).
http://dx.doi.org/10.1039/c1cc15046d
13.
C. M. Kolodziej, S. H. Kim, R. M. Broyer, S. S. Saxer, C. G. Decker, and H. D. Maynard, J. Am. Chem. Soc. 134, 247 (2012).
http://dx.doi.org/10.1021/ja205524x
14.
S. P. Garland, C. T. McKee, Y. R. Chang, V. K. Raghunathan, P. Russell, and C. J. Murphy, Langmuir 30, 2101 (2014).
http://dx.doi.org/10.1021/la403590v
15.
H. Ma, J. Hyun, Z. Zhang, T. P. Beebe, and A. Chilkoti, Adv. Funct. Mater. 15, 529 (2005).
http://dx.doi.org/10.1002/adfm.200400088
16.
J. Hyun, H. Ma, P. Banerjee, J. Cole, K. Gonsalves, and A. Chilkoti, Langmuir 18, 2975 (2002).
http://dx.doi.org/10.1021/la015712x
17.
Z. Yang and A. Chilkoti, Adv. Mater. 12, 413 (2000).
http://dx.doi.org/10.1002/(SICI)1521-4095(200003)12:6<413::AID-ADMA413>3.0.CO;2-#
18.
H. Ma, J. Hyun, P. Stiller, and A. Chilkoti, Adv. Mater. 16, 338 (2004).
http://dx.doi.org/10.1002/adma.200305830
19.
H. Ma, D. Li, X. Sheng, B. Zhao, and A. Chilkoti, Langmuir 22, 3751 (2006).
http://dx.doi.org/10.1021/la052796r
20.
H. Ma, M. Wells, T. P. Beebe, and A. Chilkoti, Adv. Funct. Mater. 16, 640 (2006).
http://dx.doi.org/10.1002/adfm.200500426
21.
A. Hucknall, A. J. Simnick, R. T. Hill, A. Chilkoti, A. Garcia, M. S. Johannes, R. L. Clark, S. Zauscher, and B. D. Ratner, Biointerphases 4, FA50 (2009).
http://dx.doi.org/10.1116/1.3151968
22.
R. S. Kane, S. Takayama, E. Ostuni, D. E. Ingber, and G. M. Whitesides, Biomaterials 20, 2363 (1999).
http://dx.doi.org/10.1016/S0142-9612(99)00165-9
23.
A. Revzin, R. G. Tompkins, and M. Toner, Langmuir 19, 9855 (2003).
http://dx.doi.org/10.1021/la035129b
24.
M. Veiseh, B. T. Wickes, D. G. Castner, and M. Zhang, Biomaterials 25, 3315 (2004).
http://dx.doi.org/10.1016/j.biomaterials.2003.10.014
25.
Z. Nie and E. Kumacheva, Nat. Mater. 7, 277 (2008).
http://dx.doi.org/10.1038/nmat2109
26.
E. Wang, M. S. Desai, K. Heo, and S. W. Lee, Langmuir 30, 2223 (2014).
http://dx.doi.org/10.1021/la404333b
27.
R. A. Latour, in Encyclopedia of Biomaterials and Biomedical Engineering ( Taylor & Francis, New York, 2013), p. 270.
http://dx.doi.org/10.1081/E-EBBE-120041856
28.
C. D. Bain, E. B. Troughton, Y. T. Tao, J. Evall, G. M. Whitesides, and R. G. Nuzzo, J. Am. Chem. Soc. 111, 321 (1989).
http://dx.doi.org/10.1021/ja00183a049
29.
U. Hersel, C. Dahmen, and H. Kessler, Biomaterials 24, 4385 (2003).
http://dx.doi.org/10.1016/S0142-9612(03)00343-0
30.
E. Ruoslahti, Annu. Rev. Cell Dev. Biol. 12, 697 (1996).
http://dx.doi.org/10.1146/annurev.cellbio.12.1.697
31.
A. Nicol, D. Channe Gowda, and D. W. Urry, J. Biomed. Mater. Res. 26, 393 (1992).
http://dx.doi.org/10.1002/jbm.820260309
32.
A. Krukau and I. Brovchenko, Biomacromolecules 8, 2196 (2007).
http://dx.doi.org/10.1021/bm070233j
33.
S. Roberts, M. Dzuricky, and A. Chilkoti, FEBS Lett. 589, 2477 (2015).
http://dx.doi.org/10.1016/j.febslet.2015.08.029
34.
X. Yao and M. Hong, J. Am. Chem. Soc. 126, 4199 (2004).
http://dx.doi.org/10.1021/ja036686n
35.
M. S. Pometun, E. Y. Chekmenev, and R. J. Wittebort, J. Biol. Chem. 279, 7982 (2004).
http://dx.doi.org/10.1074/jbc.M310948200
36.
D. W. Urry, Prog. Biophys. Mol. Biol. 57, 23 (1992).
http://dx.doi.org/10.1016/0079-6107(92)90003-O
37.
D. W. Urry, J. Phys. Chem. B 101, 11007 (1997).
http://dx.doi.org/10.1021/jp972167t
38.
M. Hnilova, D. Khatayevich, A. Carlson, E. E. Oren, C. Gresswell, S. Zheng, F. Ohuchi, M. Sarikaya, and C. Tamerler, J. Colloid Interface Sci. 365, 97 (2012).
http://dx.doi.org/10.1016/j.jcis.2011.09.006
39.
T. Kacar, J. Ray, M. Gungormus, E. E. Oren, C. Tamerler, and M. Sarikaya, Adv. Mater. 21, 295 (2009).
http://dx.doi.org/10.1002/adma.200801877
40.
T. Kacar, M. T. Zin, C. So, B. Wilson, H. Ma, N. Gul-Karaguler, A. K.-Y. Jen, M. Sarikaya, and C. Tamerler, Biotechnol. Bioeng. 103, 696 (2009).
http://dx.doi.org/10.1002/bit.22282
41.
J. H. Wei, T. Kacar, C. Tamerler, M. Sarikaya, and D. S. Ginger, Small 5, 689 (2009).
http://dx.doi.org/10.1002/smll.200801911
42.
A. Sengupta, C. K. Thai, M. S. R. Sastry, J. F. Matthaei, D. T. Schwartz, E. J. Davis, and F. Baneyx, Langmuir 24, 2000 (2008).
http://dx.doi.org/10.1021/la702079e
43.
N. Yokoo et al., J. Phys. Chem. B 114, 480 (2010).
http://dx.doi.org/10.1021/jp907731b
44.
K. S. Straley and S. C. Heilshorn, Front. Neuroeng. 2, 9 (2009).
http://dx.doi.org/10.3389/neuro.16.009.2009
45.
D. Kurzbach, W. Hassouneh, J. R. McDaniel, E. A. Jaumann, A. Chilkoti, and D. Hinderberger, J. Am. Chem. Soc. 135, 11299 (2013).
http://dx.doi.org/10.1021/ja4047872
46.
D. E. Meyer and A. Chilkoti, Nat. Biotechnol. 17, 1112 (1999).
http://dx.doi.org/10.1038/15100
47.
W. Hassouneh, T. Christensen, and A. Chilkoti, “ Unit–6.11 Elastin-like polypeptides as a purification tag for recombinant proteins,” Current Protocols in Protein Science / Editorial Board, edited by John E. Coligan et al. (2010).
http://dx.doi.org/10.1002/0471140864.ps0611s61
48.
J. Andrew MacKay, M. Chen, J. R. McDaniel, W. Liu, A. J. Simnick, and A. Chilkoti, Nat. Mater. 8, 993 (2009).
http://dx.doi.org/10.1038/nmat2569
49.
S. R. MacEwan and A. Chilkoti, J. Controlled Release 190, 314 (2014).
http://dx.doi.org/10.1016/j.jconrel.2014.06.028
50.
M. Ebara, M. Yamato, T. Aoyagi, A. Kikuchi, K. Sakai, and T. Okano, Adv. Mater. 20, 3034 (2008).
http://dx.doi.org/10.1002/adma.200702308
51.
D. E. Meyer and A. Chilkoti, “ Protein purification by inverse transition cycling,” Protein–Protein Interaction: A Molecular Cloning Manual, edited by Erica Golemis ( Cold Spring Harbor Laboratory, New York, 2002), Chap. 18, p. 329.
52.
G. L. Bidwell and D. Raucher, Mol. Cancer Ther. 4, 1076 (2005).
http://dx.doi.org/10.1158/1535-7163.MCT-04-0253
53.
M. Rodahl, F. Höök, C. Fredriksson, C. A. Keller, A. Krozer, P. Brzezinski, M. Voinova, and B. Kasemo, Faraday Discuss. 107, 229 (1997).
http://dx.doi.org/10.1039/a703137h
54.
M. V. Voinova, M. Rodahl, M. Jonson, and B. Kasemo, Phys. Scr. 59, 391 (1999).
http://dx.doi.org/10.1238/Physica.Regular.059a00391
55.
R. Pytela, M. D. Pierschbacher, and E. Ruoslahti, Cell 40, 191 (1985).
http://dx.doi.org/10.1016/0092-8674(85)90322-8
56.
R. Pytela, M. D. Pierschbacher, and E. Ruoslahti, Proc. Natl. Acad. Sci. 82, 5766 (1985).
http://dx.doi.org/10.1073/pnas.82.17.5766
57.
J. E. Koblinski, M. Wu, B. Demeler, K. Jacob, and H. K. Kleinman, J. Cell Sci. 118, 2965 (2005).
http://dx.doi.org/10.1242/jcs.02411
58.
S. Sek, A. Misicka, K. Swiatek, and E. Maicka, J. Phys. Chem. B 110, 19671 (2006).
http://dx.doi.org/10.1021/jp063073z
59.
M. A. Case, G. L. McLendon, Y. Hu, T. K. Vanderlick, and G. Scoles, Nano Lett. 3, 425 (2003).
http://dx.doi.org/10.1021/nl025795h
60.
M. Amiram, K. M. Luginbuhl, X. Li, M. N. Feinglos, and A. Chilkoti, J. Controlled Release 172, 144 (2013).
http://dx.doi.org/10.1016/j.jconrel.2013.07.021
61.
R. J. McMurray et al., Nat. Mater. 10, 637 (2011).
http://dx.doi.org/10.1038/nmat3058
62.
J. C. Chang, G. J. Brewer, and B. C. Wheeler, Biomed. Microdevices 2, 245 (2000).
http://dx.doi.org/10.1023/A:1009946920296
63.
D. W. Branch, B. C. Wheeler, G. J. Brewer, and D. E. Leckband, IEEE Trans. Biomed. Eng. 47, 290 (2000).
http://dx.doi.org/10.1109/10.827289
64.
K. Na, J. Jung, O. Kim, J. Lee, T. G. Lee, Y. H. Park, and J. Hyun, Langmuir 24, 4917 (2008).
http://dx.doi.org/10.1021/la702796y
65.
M. Mie, Y. Mizushima, and E. Kobatake, J. Biomed. Mater. Res. B 86, 283 (2008).
http://dx.doi.org/10.1002/jbm.b.31019
66.
T. Koga, K. Nakamoto, K. Odawara, T. Matsuoka, and N. Higashi, Polymers (Basel) 7, 134 (2015).
http://dx.doi.org/10.3390/polym7010134
67.
M. Sarikaya, C. Tamerler, A. K.-Y. Jen, K. Schulten, and F. Baneyx, Nat. Mater. 2, 577 (2003).
http://dx.doi.org/10.1038/nmat964
68.
A. M. Belcher, S. R. Whaley, D. S. English, E. L. Hu, and P. F. Barbara, Nature 405, 665 (2000).
http://dx.doi.org/10.1038/35015043
69.
T. Togashi, N. Yokoo, M. Umetsu, S. Ohara, T. Naka, S. Takami, H. Abe, I. Kumagai, and T. Adschiri, J. Biosci. Bioeng. 111, 140 (2011).
http://dx.doi.org/10.1016/j.jbiosc.2010.09.013
70.
U. O. S. Seker and H. V. Demir, Molecules 16, 1426 (2011).
http://dx.doi.org/10.3390/molecules16021426
71.
C. Tamerler and M. Sarikaya, Philos. Trans., A 367, 1705 (2009).
http://dx.doi.org/10.1098/rsta.2009.0018
72.
C. Tamerler, M. Duman, E. E. Oren, M. Gungormus, X. Xiong, T. Kacar, B. A. Parviz, and M. Sarikaya, Small 2, 1372 (2006).
http://dx.doi.org/10.1002/smll.200600070
73.
See supplementary material at http://dx.doi.org/10.1116/1.4952452 for details on the setup for controlled washing of cells bound to surfaces, fluorescence intensity analysis of peptide modified substrates, thickness of peptide layers, thermal characterization of RGD-ELP-Cys, and quantitative analysis of cell adhesion behavior on peptide modified surfaces at different temperatures.[Supplementary Material]
http://aip.metastore.ingenta.com/content/avs/journal/bip/11/2/10.1116/1.4952452
Loading
/content/avs/journal/bip/11/2/10.1116/1.4952452
Loading

Data & Media loading...

Abstract

Patterning cells on material surfaces is an important tool for the study of fundamental cell biology, tissue engineering, and cell-based bioassays. Here, the authors report a simple approach to pattern cells on gold patterned silicon substrates with high precision, fidelity, and stability. Cell patterning is achieved by exploiting adsorbed biopolymer orientation to either enhance (gold regions) or impede (silicon oxide regions) cell adhesion at particular locations on the patterned surface. Genetic incorporation of gold binding domains enables C-terminal chemisorption of polypeptides onto gold regions with enhanced accessibility of N-terminal cell binding domains. In contrast, the orientation of polypeptides adsorbed on the silicon oxide regions limit the accessibility of the cell binding domains. The dissimilar accessibility of cell binding domains on the gold and silicon oxide regions directs the cell adhesion in a spatially controlled manner in serum-free medium, leading to the formation of well-defined cellular patterns. The cells are confined within the polypeptide-modified gold regions and are viable for eight weeks, suggesting that bioactive polypeptide modified surfaces are suitable for long-term maintenance of patterned cells. This study demonstrates an innovative surface-engineering approach for cell patterning by exploiting distinct ligand accessibility on heterogeneous surfaces.

Loading

Full text loading...

/deliver/fulltext/avs/journal/bip/11/2/1.4952452.html;jsessionid=pLWrBiViPnBwDnF7ETCdW-7z.x-aip-live-03?itemId=/content/avs/journal/bip/11/2/10.1116/1.4952452&mimeType=html&fmt=ahah&containerItemId=content/avs/journal/bip
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=avspublications.org/11/2/10.1116/1.4952452&pageURL=http://scitation.aip.org/content/avs/journal/bip/11/2/10.1116/1.4952452'
Right1,Right2,Right3,