Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
R. D. Scott, The Direct Medical Costs of Healthcare-Associated Infections in U.S. Hospitals and the Benefits of Prevention ( Centers for Disease Control and Prevention, Atlanta, 2009).
N. Barraud, M. V. Storey, Z. P. Moore, J. S. Webb, S. A. Rice, and S. Kjelleberg, Microb. Biotechnol. 2, 370 (2009).
M. Cloutier, D. Mantovani, and F. Rosei, Trends Biotechnol. 33, 637 (2015).
W. Fu, T. Forster, O. Mayer, J. J. Curtin, S. M. Lehman, and R. D. Donlan, Antimicrob. Agents Chemother. 54, 397 (2010).
A. Colleta, J. Wu, Y. Wo, M. Kappler, H. Chen, C. Xi, and M. E. Meyerhoff, ACS Biomater. Sci. Eng. 1, 416 (2015).
L. Hall-Stoodley, J. W. Costerton, and P. Stoodley, Nat. Rev. Microbiol. 2, 95 (2004).
E. Hernandez-Jimenez et al., Biochem. Biophys. Res. Commun. 441, 947 (2013).
Y. Irie, B. R. Borlee, J. R. O'Connor, P. J. Hill, C. S. Harwood, D. J. Wozniak, and M. R. Parsek, PNAS 109, 20632 (2012).
M. E. Falagas and P. Kopterides, J. Hosp. Infect. 64, 7 (2006).
G. D. Wright, Nat. Rev. Microb. 5, 175 (2007).
O. Bazaka and K. Bazaka, Antibacterial Surfaces: Cytotoxic Effects and Biocompatibility of Antimicrobial Surfaces ( Springer International, Cham, Switzerland, 2005).
H. T. T. Duong, N. N. M. Adnan, N. Barraud, J. S. Basuki, S. K. Kutty, K. Jung, N. Kumar, T. P. Davis, and C. Boyer, J. Mater. Chem. B 2, 5003 (2014).
C. Vreuls, G. Zocchi, B. Thierry, G. Garitte, S. S. Griesser, C. Archambeau, C. Van de Weerdt, J. Martial, and H. Griesser, J. Mater. Chem. 20, 8092 (2010).
K. Bazaka et al., Biomacromolecules 11, 2016 (2010).
K. Chaloupka, Y. Malam, and A. M. Seifalian, Trends Biotechnol. 28, 580 (2010).
T. Shirai, T. Shimizu, K. Ohtani, Y. Zen, M. Takaya, and H. Tsuchiya, Acta Biomater. 7, 1928 (2011).
A. M. Carmona-Ribeiro and L. Dias de Melo Carrasco, Int. J. Mol. Sci. 14, 9906 (2013).
Y. Lu, D. L. Slomberg, and M. H. Schoenfisch, Biomaterials 35, 1716 (2014).
M. Chatterjee, C. P. Anju, L. Biswas, V. A. Kumar, and C. G. Mohan, Int. J. Med. Microb. 306, 48 (2016).
B. J. Privett, A. D. Broadnax, S. J. Bauman, D. A. Riccio, and M. H. Schoenfisch, Nitric Oxide 26, 169 (2012).
N. Barraud, M. J. Kelso, S. A. Rice, and S. Kjelleberg, Curr. Pharm. Des. 21, 31 (2015).
F. C. Fang, J. Clin. Invest. 99, 2818 (1997).
M. L. Jones, J. G. Ganopolsky, A. Labbe, and S. Prakash, Appl. Microb. Biotechnol. 87, 509 (2010).
E. M. Hetrick, J. H. Shin, N. A. Stasko, C. B. Johnson, D. A. Wespe, E. Holmuhamedov, and M. H. Schoenfisch, ACS Nano 2, 235 (2008).
B. Sun, D. L. Slomberg, S. L. Chudasama, Y. Lu, and M. H. Schoenfisch, Biomacromolecules 13, 3343 (2012).
C. Bogdan, Nat. Immunol. 2, 907 (2001).
C. Von Eiff, B. Jansen, W. Kohnen, and K. Becker, Drugs 65, 179 (2005).
P. Stoodley, K. Sauer, D. G. Davies, and J. W. Costerton, Annu. Rev. Microbiol. 56, 187 (2002).
K. Buckingham-Meyer, D. M. Goeres, and M. A. Hamilton, J. Microbiol. Methods 70, 236 (2007).
A. L. Spoering and K. Lewis, J. Bacteriol. 183, 6746 (2001).
P. N. Coneski and M. H. Schoenfisch, Chem. Soc. Rev. 41, 3753 (2012).
K. P. Dobmeier and M. H. Schoenfisch, Biomacromolecules 5, 2493 (2004).
E. M. Hetrick and M. H. Schoenfisch, Biomaterials 28, 1948 (2007).
N. Barraud, D. J. Hassett, S. Hwang, S. A. Rice, S. Kjelleberg, and J. S. Webb, J. Bacteriol. 188, 7344 (2006).
T. W. Hart, Tetrahedron Lett. 26, 2013 (1985).
V. B. Damodaran, J. M. Joslin, K. A. Wold, S. M. Lantvit, and M. M. Reynolds, J. Mater. Chem. 22, 5990 (2012).
Promega Corporation, Cell Titer-Blue Cell Viability Assay ( Promega Corporation, Madison, WI, 2013).
H. Ceri, M. E. Olson, C. Stremick, R. R. Read, D. Morck, and A. Buret, J. Clin. Microbiol. 37, 1771 (1999).
M. A. Hamilton, The Log Reduction (LR) Measure of Disinfectant Efficacy ( MSU Center for Biofilm Engineering, Bozeman, 2010).
A. R. Butler and P. Rhodes, Anal. Biochem. 249, 1 (1997).
P. G. Wang, M. Xian, X. Tang, X. Wu, Z. Wen, T. Cai, and A. J. Janczuk, Chem. Rev. 102, 1091 (2002).
D. L. H. Williams, Acc. Chem. Res. 32, 869 (1999).
A. W. Carpenter and M. H. Schoenfisch, Chem. Soc. Rev. 41, 3742 (2012).
J. O. Kim, J. Noh, R. K. Thapa, N. Hasan, M. Choi, J. H. Kim, J. Lee, S. K. Ku, and J. Yoo, Int. J. Biol. Macromol. 79, 217 (2015).
Y. Lu, A. Shah, R. A. Hunter, R. J. Soto, and M. H. Schoenfisch, Acta Biomater. 12, 62 (2015).
A. Pegalajar-Jurado, K. A. Wold, J. M. Joslin, B. H. Neufeld, K. A. Arabea, L. A. Suazo, S. L. McDaniel, R. A. Bowen, and M. M. Reynolds, J. Controlled Release 217, 228 (2015).
L. A. Ridnour, D. D. Thomas, D. Mancardi, M. G. Espey, K. M. Miranda, N. Paolocci, M. Feelisch, J. Fukuto, and D. A. Wink, Biol. Chem. 385, 1 (2004).
H. Shah, W. Bosch, K. M. Thompson, and W. C. Hellinger, Neurohospitalist 3, 144 (2013).
B. V. Worley, K. M. Schilly, and M. H. Schoenfisch, Mol. Pharm. 12, 1573 (2015).
A. Fontijn, A. J. Sabadell, and R. J. Ronco, Anal. Chem. 42, 575 (1970).
J. L. Harding and M. M. Reynolds, Anal. Chem. 86, 2025 (2014).
J. M. Joslin, S. M. Lantvit, and M. M. Reynolds, ACS Appl. Mater. Interfaces 5, 9285 (2013).
J. M. Joslin and M. M. Reynolds, ACS Appl. Mater. Interfaces 4, 1126 (2012).

Data & Media loading...


Bacterial colonies that reside on a surface, known as biofilms, are intrinsically impenetrable to traditional antibiotics, ultimately driving research toward an alternative therapeutic approach. Nitric oxide (NO) has gained attention for its biologically beneficial properties, particularly centered around its antibacterial capabilities. NO donors that can release the molecule under physiological conditions (such as -nitrosothiols) can be utilized in clinical settings to combat bacterial biofilm infections. Herein the authors describe determining a critical concentration of NO necessary to cause >90% reduction of a biofilm grown on medical grade polyurethane films. The biofilm was grown under optimal culture conditions [in nutrient broth media (NBM) at 37 °C] for 24 h before the addition of the NO donor -nitrosoglutathione (GSNO) in NBM for an additional 24 h. The cellular viability of the biofilm after the challenge period was tested using varying concentrations of NO to determine the critical amount necessary to cause at least a 90% reduction in bacterial biofilm viability. The critical GSNO concentration was found to be 10 mM, which corresponds to 2.73 mM NO. Time kill experiments were performed on the 24 h biofilm using the critical amount of NO at 4, 8, 12, and 16 h and it was determined that the 90% biofilm viability reduction occurred at 12 h and was sustained for the entire 24 h challenge period. This critical concentration was subsequently tested for total NO release via a nitric oxide analyzer. The total amount of NO released over the 12 h challenge period was found to be 5.97 ± 0.66 × 10−6 mol NO, which corresponds to 1.49 ± 0.17 mol NO/ml NBM. This is the first identification of the critical NO concentration needed to elicit this biological response on a medically relevant polymer.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd