Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/avs/journal/bip/3/2/10.1116/1.2976448
1.
1J. Penfold and R. K. Thomas, J. Phys.: Condens. Matter 2, 1369 (1990).
http://dx.doi.org/10.1088/0953-8984/2/6/001
2.
2J. Penfold, Curr. Opin. Colloid Interface Sci. 7, 139 (2002).
http://dx.doi.org/10.1016/S1359-0294(02)00015-8
3.
3J. E. Bradley, E. M. Lee, R. K. Thomas, A. J. Willatt, J. Penfold, R. C. Ward, D. P. Gregory and W. Waschkowski, Langmuir 4, 821 (1988).
http://dx.doi.org/10.1021/la00082a008
4.
4T. L. Crowley, E. M. Lee, E. A. Simister and R. K. Thomas, Physica B Amsterdam 173, 143 (1991).
http://dx.doi.org/10.1016/0921-4526(91)90044-F
5.
5J. R. Lu, T. J. Su, R. K. Thomas, J. Penfold and R. W. Richards, Polymer 37, 109 (1996).
http://dx.doi.org/10.1016/0032-3861(96)81605-3
6.
6H. Xu, S. Perumal, X. Zhao, N. Du, X.-Y. Liu, Z. Jia and J. R. Lu, Biophys. J. 94, 4405 (2008).
http://dx.doi.org/10.1529/biophysj.107.124560
7.
7V. F. Sears, Neutron News 3, 29 (1992).
http://dx.doi.org/10.1080/10448639208218770
8.
8C. F. Majkrzak, S. K. Satija, N. F. Berk, S. K. Krueger, J. A. Borchers, J. A. Dura, R. Ivkov and K. ODonovan, Neutron News 12, 25 (2001).
http://dx.doi.org/10.1080/10448630108244979
9.
9R. Cubitt and G. Fragneto, Appl. Phys. A: Mater. Sci. Process. 74, S329 (2002).
http://dx.doi.org/10.1007/s003390201611
10.
10J. Lekner, Theory of Reflection of Electromagnetic and Particle Waves (Martinus Nijhoff, Dordrecht, 1987).
11.
11L. G. Parratt, Phys. Rev. 95, 359 (1954).
http://dx.doi.org/10.1103/PhysRev.95.359
12.
12F. Abelès, Ann. Phys. (Paris) 5, 596 (1950).
13.
13M. Born and E. Wolf, Prinicples of Optics (Cambridge University Press, Cambridge, England, 1980) 6th ed..
14.
14D. J. Lyttle, J. R. Lu, T. J. Su, R. K. Thomas and J. Penfold, Langmuir 11, 1001 (1995).
http://dx.doi.org/10.1021/la00003a051
15.
15J. R. Lu, R. K. Thomas and J. Penfold, Adv. Colloid Interface Sci. 84, 143 (2000).
http://dx.doi.org/10.1016/S0001-8686(99)00019-6
16.
16G. Fragneto, J. R. Lu, D. C. McDermott, R. K. Thomas, A. R. Rennie, P. D. Gallagher and S. K. Satija, Langmuir 12, 477 (1996).
http://dx.doi.org/10.1021/la950289b
17.
17S. Krueger, J. F. Ankner, S. K. Satija, C. F. Majkrzak, D. Gurley and M. Colombini, Langmuir 11, 3218 (1995).
http://dx.doi.org/10.1021/la00008a055
18.
18Neutron Scattering in Biology, edited by J. Fitter, T. Gutberlet and J. Katsaras (Springer, Berlin, 2006).
19.
19R. K. Thomas, Annu. Rev. Phys. Chem. 55, 391 (2004).
http://dx.doi.org/10.1146/annurev.physchem.54.011002.103830
20.
20T. Nylander, F. Tiberg, T. S. Su, J. R. Lu and R. K. Thomas, Biomacromolecules 2, 278 (2001).
http://dx.doi.org/10.1021/bm0056308
21.
21J. R. Lu, Annu. Rep. Prog. Chem., Sect. C: Phys. Chem. 95, 3 (1999).
http://dx.doi.org/10.1039/pc095003
22.
22M. Cárdenas, T. Arnebrant, A. Rennie, G. Fragneto, R. K. Thomas and L. Lindh, Biomacromolecules 8, 65 (2007).
http://dx.doi.org/10.1021/bm060492t
23.
23M. Cárdenas and T. Nylander, Interaction of DNA with Surfactants and Polymers, edited by B. Lindman and R. Dias (Wiley, Oxford, 2008) p. 291.
24.
24M. Cárdenas, C. A. Dreiss, T. Nylander, C. P. Chan, T. Cosgrove and B. Lindman, Langmuir 21, 3578 (2005).
http://dx.doi.org/10.1021/la047251w
25.
25P. Vandoolaeghe, A. R. Rennie, R. A. Campbell, R. K. Thomas, F. Höök, G. Fragneto, F. Tiberg and T. Nylander, Soft Matter 4, 2267 (2008).
http://dx.doi.org/10.1039/b801630e
26.
26H. P. Vacklin, F. Tiberg and R. K. Thomas, Biochim. Biophys. Acta 1668, 17 (2005).
http://dx.doi.org/10.1016/j.bbamem.2004.11.001
27.
27H. P. Vacklin, F. Tiberg, G. Fragneto and R. K. Thomas, Langmuir 21, 2827 (2005).
http://dx.doi.org/10.1021/la047389e
28.
28A. Yaseen, J. R. Lu, J. R. P. Webster and J. Penfold, Biophys. Chem. 117, 263 (2005).
http://dx.doi.org/10.1016/j.bpc.2005.06.001
29.
29A. P. Brun, S. A. Holt, D. S. Shah, C. F. Majkrzak and J. H. Lakey, Eur. Biophys. J. 37, 639 (2008).
http://dx.doi.org/10.1007/s00249-008-0291-2
30.
30L. Nevot and P. Croce, Rev. Phys. Appl. 15, 761 (1980).
http://dx.doi.org/10.1051/rphysap:01980001503076100
31.
31See http://www.hmi.de/bensc/instrumentation/instrumente/v6/refl/parratt_en.htm for a description of the computer programs and access to the software.
32.
32See http://material.fysik.uu.se/Group_members/adrian/reflect.htm Analysis for a description of the computer programs and access to the software.
33.
33A. Nelson, J. Appl. Crystallogr. 39, 273 (2006).
http://dx.doi.org/10.1107/S0021889806005073
34.
34M. Björck and G. Andersson, J. Appl. Crystallogr. 40, 1174 (2007).
http://dx.doi.org/10.1107/S0021889807045086
35.
35See http://material.fysik.uu.se/Group_members/adrian/cprof.htm for an account of the specific computer programs.
36.
36See http://material.fysik.uu.se/Group_members/adrian/refprog.htm for an account of the specific computer programs.
37.
37J. Penfold, D. S. Sivia, E. Staples, I. Tucker and R. K. Thomas, Langmuir 20, 2265 (2004).
http://dx.doi.org/10.1021/la035432c
38.
38T. P. Russell, Physica B Amsterdam 221, 267 (1996).
http://dx.doi.org/10.1016/0921-4526(95)00937-X
39.
39J. Zhang, T. Nylander, R. A. Campbell, A. R. Rennie, S. Zauscher and P. Linse, Soft Matter 4, 500 (2008).
http://dx.doi.org/10.1039/b714911e
40.
40J. M. H. M. Scheutjens and G. J. Fleer, J. Phys. Chem. 83, 1619 (1979).
http://dx.doi.org/10.1021/j100475a012
41.
41G. J. Fleer, M. A. Cohen Stuart, J. M. H. M. Scheutjens, T. Cosgrove and B. Vincent, Polymers at Interfaces (Chapman & Hall, London, 1993).
42.
42P. J. Flory, Principles of Polymer Chemistry (Cornell University Press, Ithaca, NY, 1953).
43.
43G. Karlström, J. Phys. Chem. 89, 4962 (1985).
http://dx.doi.org/10.1021/j100269a015
44.
44P. Linse and M. Björling, Macromolecules 24, 6700 (1991).
http://dx.doi.org/10.1021/ma00025a022
45.
45P. Linse and T. A. Hatton, Langmuir 13, 4066 (1997).
http://dx.doi.org/10.1021/la9620871
46.
46J. E. Dennis and R. B. Schnabel, Numerical Methods for Unconstrained Optimization and Nonlinear Equations (Prentice-Hall, Englewood Cliffs, 1983).
47.
47M. Landgren and B. Jonsson, J. Phys. Chem. 97, 1656 (1993).
http://dx.doi.org/10.1021/j100110a030
48.
48R. M. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, Amsterdam, 1977).
49.
49J. A. Defeijter, J. Benjamins and F. A. Veer, Biopolymers 17, 1759 (1978).
http://dx.doi.org/10.1002/bip.1978.360170711
50.
50M. Rodahl, F. Hook, C. Fredriksson, C. A. Keller, A. Krozer, P. Brzezinski, M. Voinova and B. Kasemo, Faraday Discuss 107, 229 (1997).
http://dx.doi.org/10.1039/a703137h
51.
51F. Höök, B. Kasemo, T. Nylander, C. Fant, K. Sott and E. H. Elwing, Anal. Chem. 73, 5796 (2001).
http://dx.doi.org/10.1021/ac0106501
52.
52J. S. Pedersen, Adv. Colloid Interface Sci. 70, 171 (1997).
http://dx.doi.org/10.1016/S0001-8686(97)00312-6
53.
53A. D. Bangham and R. W. Horne, J. Mol. Biol. 8, 660 (1964).
http://dx.doi.org/10.1016/S0022-2836(64)80115-7
54.
54G. Gregoriadis, C. P. Swain, E. J. Wills and A. S. Tavill, Lancet 303, 1313 (1974).
http://dx.doi.org/10.1016/S0140-6736(74)90682-5
55.
55P. Couvreur and C. Vauthier, Pharm. Res. 23, 1417 (2006).
http://dx.doi.org/10.1007/s11095-006-0284-8
56.
56S. Ganta, H. Devalapally, A. Shahiwala, M. Amiji and J. Controlled, Release 126, 187 (2008).
http://dx.doi.org/10.1016/j.jconrel.2007.12.017
57.
57M. C. Woodle and D. D. Lasic, Biochim. Biophys. Acta 1113, 171 (1992).
58.
58D. Papahadjopoulos et al., Proc. Natl. Acad. Sci. U.S.A. 88, 11460 (1991).
http://dx.doi.org/10.1073/pnas.88.24.11460
59.
59S. I. Jeon, J. H. Lee, J. D. Andrade, P. G. Gennes and J. Colloid, Interface Sci. 142, 149 (1991).
http://dx.doi.org/10.1016/0021-9797(91)90043-8
60.
60L. M. Ickenstein, M. C. Arfvidsson, D. Needham, L. D. Mayera and K. Edwards, Biochim. Biophys. Acta 1614, 135 (2003).
http://dx.doi.org/10.1016/S0005-2736(03)00196-2
61.
61J. S. Patton and M. C. Carey, Science 204, 145 (1979).
http://dx.doi.org/10.1126/science.432636
62.
62K. Larsson, J. Phys. Chem. 93, 7304 (1989).
http://dx.doi.org/10.1021/j100358a010
63.
63W. Buchheim and K. Larsson, J. Colloid Interface Sci. 117, 582 (1987).
http://dx.doi.org/10.1016/0021-9797(87)90422-X
64.
64M. Monduzzi, H. Ljusberg-Wahren and K. Larsson, Langmuir 16, 7355 (2000).
http://dx.doi.org/10.1021/la0000872
65.
65K. Larsson, Curr. Opin. Colloid Interface Sci. 5, 64 (2000).
http://dx.doi.org/10.1016/S1359-0294(00)00040-6
66.
66T. Landh, J. Phys. Chem. 98, 8453 (1994).
http://dx.doi.org/10.1021/j100085a028
67.
67J. Gustafsson, H. Ljusberg-Wahren, M. Almgren and K. Larsson, Langmuir 12, 4611 (1996).
http://dx.doi.org/10.1021/la960318y
68.
68J. Barauskas, M. Johnsson, F. Johnson and F. Tiberg, Langmuir 21, 2569 (2005).
http://dx.doi.org/10.1021/la047590p
69.
69J. Barauskas, M. Johnsson and F. Tiberg, Nano Lett. 5, 1615 (2005).
http://dx.doi.org/10.1021/nl050678i
70.
70Delivery and Controlled Release of Bioactives in Foods and Nutraceuticals, edited by N. Garti (Woodhead, Cambridge, 2008).
71.
71E. Acosta, Delivery and Controlled Release of Bioactives in Foods and Nutraceuticals, edited by N. Garti (Woodhead, Cambridge, 2008) p. 53.
72.
72T. Niidome and L. Huang, Gene Ther. 9, 1647 (2002).
http://dx.doi.org/10.1038/sj.gt.3301923
73.
73K. K. Ewert, C. E. Samuel and C. R. Safinya, DNA Interactions with Polymers and Surfactants, edited by R. Dias and B. Lindman (Wiley, Hoboken, NJ, 2008) p. 377.
74.
74E. Sackmann, Science 271, 43 (1996).
http://dx.doi.org/10.1126/science.271.5245.43
75.
75R. P. Richter, R. Berat and A. R. Brisson, Langmuir 22, 3497 (2006).
http://dx.doi.org/10.1021/la052687c
76.
76F. Tiberg, I. Harwigsson and M. Malmsten, Eur. Biophys. J. 29, 196 (2000).
http://dx.doi.org/10.1007/PL00006646
77.
77T. Gutberlet, R. Steitz, G. Fragneto and B. Klösgen, J. Phys.: Condens. Matter 16, 2469 (2004).
http://dx.doi.org/10.1088/0953-8984/16/26/020
78.
78D. Stroumpoulis, A. Parra and M. Tirrell, AIChE J. 52, 2931 (2006).
http://dx.doi.org/10.1002/aic.10914
79.
79C. A. Keller and B. Kasemo, Biophys. J. 75, 1397 (1998).
http://dx.doi.org/10.1016/S0006-3495(98)74057-3
80.
80H. P. Wacklin and R. K. Thomas, Langmuir 23, 7644 (2007).
http://dx.doi.org/10.1021/la063476q
81.
81L. M. Grant and F. Tiberg, Biophys. J. 82, 1373 (2002).
http://dx.doi.org/10.1016/S0006-3495(02)75492-1
82.
82J. Y. Wong, J. Majewski, M. Seitz, C. K. Park, J. N. Israelachvili and G. S. Smith, Biophys. J. 77, 1445 (1999).
http://dx.doi.org/10.1016/S0006-3495(99)76992-4
83.
83U. A. Perez-Salas, K. M. Faucher, C. F. Majkrzak, N. F. Berk, S. Krueger and E. L. Chaikof, Langmuir 19, 7688 (2003).
http://dx.doi.org/10.1021/la034607f
84.
84M. Tanaka and E. Sackmann, Nature London 437, 656 (2005).
http://dx.doi.org/10.1038/nature04164
85.
85G. Valincius, D. J. McGillivray, W. Febo-Ayala, D. J. Vanderah, J. J. Kasianowicz and M. Lösche, J. Phys. Chem. B 110, 10213 (2006).
http://dx.doi.org/10.1021/jp0616516
86.
86D. J. McGillivray, G. Valincius, D. J. Vanderah, W. Febo-Ayala, J. T. Woodward, F. Heinrich, J. J. Kasianowicz and M. Lösche, BioInterphases 2, 21 (2007).
http://dx.doi.org/10.1116/1.2709308
87.
87B. A. Cornell, V. L. B. Braach-Maksvytis, L. G. King, P. D. J. Osman, B. Raguse, L. Wieczorek and R. J. Pace, Nature London 387, 580 (1997).
http://dx.doi.org/10.1038/42432
88.
88D. A. Doshi, A. M. Dattelbaum, E. B. Watkins, C. J. Brinker, B. I. Swanson, A. P. Shreve, A. N. Parikh and J. Majewski, Langmuir 21, 2865 (2005).
http://dx.doi.org/10.1021/la0471240
89.
89A. V. Hughes, J. R. Howse, A. Dabkowska, R. A. L. Jones, M. J. Lawrence and S. J. Roser, Langmuir 24, 1989 (2008).
http://dx.doi.org/10.1021/la702050b
90.
90H. Haas, R. Steitz, A. Fasano, G. M. Liuzzi, E. Polverini, P. Cavatorta and P. Riccio, Langmuir 23, 8491 (2007).
http://dx.doi.org/10.1021/la700733y
91.
91G. Fragneto and M. Rheinstädter, C. R. Phys. 8, 865 (2007).
http://dx.doi.org/10.1016/j.crhy.2007.09.003
92.
92C. Li, D. Constantin and T. Salditt, J. Phys.: Condens. Matter 16, S2439 (2004).
http://dx.doi.org/10.1088/0953-8984/16/26/017
93.
93N. Kucerka, M.-P. Nieh, J. Pencer, T. Harroun and J. Katsaras, Curr. Opin. Colloid Interface Sci. 12, 17 (2007).
http://dx.doi.org/10.1016/j.cocis.2006.11.006
94.
94P. Callow, G. Fragneto, R. Cubitt, D. J. Barlow, M. J. Lawrence and P. Timmins, Langmuir 21, 7912 (2005).
http://dx.doi.org/10.1021/la050957l
95.
95G. Wagner, A. Bancaud, J.-P. Quivy, C. Clapier, G. Almouzni and J.-L. Viovy, Biophys. J. 89, 3647 (2005).
http://dx.doi.org/10.1529/biophysj.105.062786
96.
96K. Matsubara, N. Sano, T. Umehara and M. Horikoshi, Genes Cells 12, 13 (2007).
http://dx.doi.org/10.1111/j.1365-2443.2007.01031.x
97.
97A. Bertin, A. Leforestier, D. Durand and F. Livolant, Biochemistry 43, 4773 (2004).
http://dx.doi.org/10.1021/bi036210g
98.
98S. A. Gani, D. C. Mukherjee and D. K. Chattoraj, Langmuir 15, 7130 (1999).
http://dx.doi.org/10.1021/la970686h
99.
99A. Elaissari, P. Cros, C. Pichot, V. Laurent and B. Mandrand, Colloids Surf. 83, 25 (1994).
http://dx.doi.org/10.1016/0927-7757(93)02664-Z
100.
100V. Balladur, A. Theretz and B. Mandrand, J. Colloid Interface Sci. 194, 408 (1997).
http://dx.doi.org/10.1006/jcis.1997.5123
101.
101R. R. Kunze and R. R. Netz, Phys. Rev. Lett. 85, 4389 (2000).
http://dx.doi.org/10.1103/PhysRevLett.85.4389
102.
102I. M. Verma and N. Somia, Nature London 389, 239 (1997).
http://dx.doi.org/10.1038/38410
103.
103N. S. Templeton and D. D. Lasic, Mol. Biotechnol. 11, 175 (1999).
http://dx.doi.org/10.1007/BF02915810
104.
104D. K. Chattoraj, P. Chowrashi and K. Chakravarti, Biopolymers 5, 173 (1967).
http://dx.doi.org/10.1002/bip.1967.360050205
105.
105K. Eskilsson, C. Leal, B. Lindman, M. Miguel and T. Nylander, Langmuir 17, 1666 (2001).
http://dx.doi.org/10.1021/la000993e
106.
106M. Cárdenas, K. Schillen, T. Nylander, J. Jansson and B. Lindman, Phys. Chem. Chem. Phys. 6, 1603 (2004).
http://dx.doi.org/10.1039/b310798a
107.
107M. Cárdenas, A. Braem, T. Nylander and B. Lindman, Langmuir 19, 7712 (2003).
http://dx.doi.org/10.1021/la026747f
108.
108L. Stryer, Biochemistry (Freeman, New York, 1995).
109.
109A. Elaissari, Y. Chevalier, F. Ganachaud, T. Delair and C. Pichot, Langmuir 16, 1261 (2000).
http://dx.doi.org/10.1021/la990696d
110.
110D. Zanchet, C. M. Michel, W. J. Parak, D. Gerion and A. P. Alivisatos, Nano Lett. 1, 32 (2001).
http://dx.doi.org/10.1021/nl005508e
111.
111S. J. Park, A. A. Lazarides, J. J. Storhoff, L. Pesce and C. A. Mirkin, J. Phys. Chem. B 108, 12375 (2004).
http://dx.doi.org/10.1021/jp040242b
112.
112L. Olofsson, T. Rindzevicius, I. Pfeiffer, M. Käll and F. Höök, Langmuir 19, 10414 (2003).
http://dx.doi.org/10.1021/la0352927
113.
113S. Moses et al., Langmuir 20, 11134 (2004).
http://dx.doi.org/10.1021/la0492815
114.
114R. Levicky, T. M. Herne, M. J. Tarlov and S. K. Satija, J. Am. Chem. Soc. 120, 9787 (1998).
http://dx.doi.org/10.1021/ja981897r
115.
115C.-Y. Lee, P. Gong, G. M. Harbers, D. W. Grainger, D. G. Castner and L. J. Gamble, Anal. Chem. 78, 3316 (2006).
http://dx.doi.org/10.1021/ac052137j
116.
116P. Gong, C.-Y. Lee, L. J. Gamble, D. G. Castner and D. W. Grainger, Anal. Chem. 78, 3326 (2006).
http://dx.doi.org/10.1021/ac052138b
117.
117L. M. Demers, C. A. Mirkin, R. C. Mucic, R. A. Reynolds, R. L. Letsinger, R. Elghanian and G. Viswanadham, Anal. Chem. 72, 5535 (2000).
http://dx.doi.org/10.1021/ac0006627
118.
118S. M. Melnikov, V. G. Sergeyev and K. Yoshikawa, J. Am. Chem. Soc. 117, 9951 (1995).
http://dx.doi.org/10.1021/ja00145a003
119.
119R. Dias, S. Melnikov, B. Lindman and M. G. Miguel, Langmuir 16, 9577 (2000).
http://dx.doi.org/10.1021/la000640f
120.
120M. Cárdenas, T. Nylander, R. K. Thomas and B. Lindman, Langmuir 21, 6495 (2005).
http://dx.doi.org/10.1021/la0501740
121.
121J. Zhang, D. J. F. Taylor, P. X. Li, R. K. Thomas, J. B. Wang and J. Penfold, Langmuir 24, 1863 (2008).
http://dx.doi.org/10.1021/la7021566
122.
122J.-C. Wu, T.-L. Lin, U.-S. Jeng and N. Torikai, Physica B Amsterdam 385–386, 838 (2006).
http://dx.doi.org/10.1016/j.physb.2006.05.120
123.
123J.-C. Wu, T.-L. Lin, U.-S. Jeng, H.-Y. Lee and T. Gutberlet, Physica B Amsterdam 385–386, 841 (2006).
http://dx.doi.org/10.1016/j.physb.2006.05.121
124.
124X. Chen, J. Wang, N. Shen, Y. Luo, L. Li, M. Liu and R. K. Thomas, Langmuir 18, 6222 (2002).
http://dx.doi.org/10.1021/la025600l
125.
125J. Generosi, C. Castellano, D. Pozzi, A. C. Castellanon, R. Felici, F. Natali and G. Fragneto, J. Appl. Phys. 96, 6839 (2004).
http://dx.doi.org/10.1063/1.1814412
126.
126P. T. Spicer, Curr. Opin. Colloid Interface Sci. 10, 274 (2005).
http://dx.doi.org/10.1016/j.cocis.2005.09.004
127.
127L. Sagalowicz, R. Mezzenga and M. E. Leser, Curr. Opin. Colloid Interface Sci. 11, 224 (2006).
http://dx.doi.org/10.1016/j.cocis.2006.07.002
128.
128P. Vandoolaeghe, F. Tiberg and T. Nylander, Langmuir 22, 9169 (2006).
http://dx.doi.org/10.1021/la061224j
129.
129M. Cárdenas, J. Campos-Teran, T. Nylander and B. Lindman, Langmuir 20, 8597 (2004).
http://dx.doi.org/10.1021/la0363581
130.
130R. Bruinsma, Eur. Phys. J. B 4, 75 (1998).
http://dx.doi.org/10.1007/s100510050353
131.
131R. Chatterjee and D. K. Chattoraj, Biopolymers 18, 147 (1979).
http://dx.doi.org/10.1002/bip.1979.360180112
http://aip.metastore.ingenta.com/content/avs/journal/bip/3/2/10.1116/1.2976448
Loading
/content/avs/journal/bip/3/2/10.1116/1.2976448
Loading

Data & Media loading...

Loading

Full text loading...

true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=avspublications.org/3/2/10.1116/1.2976448&pageURL=http://scitation.aip.org/content/avs/journal/bip/3/2/10.1116/1.2976448'
Right1,Right2,Right3,