Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/avs/journal/bip/3/2/10.1116/1.2992133
1.
1G. S. Smith, E. B. Sirota, C. R. Safinya and N. A. Clark, Phys. Rev. Lett. 60, 813 (1988).
http://dx.doi.org/10.1103/PhysRevLett.60.813
2.
2J. Katsaras, D. S.-C. Yang and R. M. Epand, Biophys. J. 63, 1170 (1992).
http://dx.doi.org/10.1016/S0006-3495(92)81680-6
3.
3M. C. Wiener and S. H. White, Biophys. J. 61, 434 (1992).
http://dx.doi.org/10.1016/S0006-3495(92)81849-0
4.
4J. Katsaras, J. Phys. Chem. 99, 4141 (1995).
http://dx.doi.org/10.1021/j100012a039
5.
5J. Katsaras and V. A. Raghunathan, Phys. Rev. Lett. 74, 2022 (1995).
http://dx.doi.org/10.1103/PhysRevLett.74.2022
6.
6V. A. Raghunathan and J. Katsaras, Phys. Rev. Lett. 74, 4456 (1995).
http://dx.doi.org/10.1103/PhysRevLett.74.4456
7.
7J. Katsaras, V. A. Raghunathan, E. J. Dufourc and J. Dufourcq, Biochemistry 34, 4684 (1995).
http://dx.doi.org/10.1021/bi00014a023
8.
8J. Katsaras, R. L. Donaberger, I. P. Swainson, D. C. Tennant, Z. Tun, R. R. Vold and R. S. Prosser, Phys. Rev. Lett. 78, 899 (1997).
http://dx.doi.org/10.1103/PhysRevLett.78.899
9.
9J. Katsaras, S. Tristram-Nagle, Y. Liu, R. L. Headrick, E. Fontes, P. C. Mason and J. F. Nagle, Phys. Rev. E 61, 5668 (2000).
http://dx.doi.org/10.1103/PhysRevE.61.5668
10.
10L. Yang, T. M. Weiss and H. W. Huang, Biophys. J. 79, 2002 (2000).
http://dx.doi.org/10.1016/S0006-3495(00)76448-4
11.
11Y. Lyatskaya, Y. Liu, S. Tristram-Nagle, J. Katsaras and J. F. Nagle, Phys. Rev. E 63, 011907 (2001).
http://dx.doi.org/10.1103/PhysRevE.63.011907
12.
12L. Yang and H. W. Huang, Science 297, 1877 (2002).
http://dx.doi.org/10.1126/science.1074354
13.
13N. Kučerka, Y. Liu, N. Chu, H. I. Petrache, S. Tristram-Nagle and J. F. Nagle, Biophys. J. 88, 2626 (2005).
http://dx.doi.org/10.1529/biophysj.104.056606
14.
14J. Torbet and M. H. F. Wilkins, J. Theor. Biol. 62, 447 (1976).
http://dx.doi.org/10.1016/0022-5193(76)90129-6
15.
15W. MacNaughtan, K. A. Snook, E. Caspi and N. P. Franks, Biochim. Biophys. Acta 818, 132 (1985).
http://dx.doi.org/10.1016/0005-2736(85)90556-5
16.
16T. Charitat, E. Bellet-Amalric, G. Fragneto and F. Graner, Eur. Phys. J. B 8, 583 (1999).
http://dx.doi.org/10.1007/s100510050725
17.
17G. Fragneto, T. Charitat, E. Bellet-Amalric, R. Cubitt and F. Graner, Langmuir 19, 7695 (2003).
http://dx.doi.org/10.1021/la026972x
18.
18J. Daillant, E. Bellet-Amalric, A. Braslau, T. Charitat, G. Fragneto, F. Graner, S. Mora, F. Rieutord and B. Stidder, Proc. Natl. Acad. Sci. U.S.A. 102, 11639 (2005).
http://dx.doi.org/10.1073/pnas.0504588102
19.
19N. A. Clark, K. J. Rothschild, D. A. Luippold and B. A. Simon, Biophys. J. 31, 65 (1980).
http://dx.doi.org/10.1016/S0006-3495(80)85041-7
20.
20T. L. Kuhl, J. Majewski, J. Y. Wong, S. Steinberg, D. E. Leckband, J. N. Israelachvili and G. S. Smith, Biophys. J. 75, 2352 (1998).
http://dx.doi.org/10.1016/S0006-3495(98)77679-9
21.
21Y. Zhang, Z. Tun and A. M. Ritchey, Langmuir 20, 6187 (2004).
http://dx.doi.org/10.1021/la0303658
22.
22C. F. Majkrzak, N. F. Berk, S. Krueger and U. A. Perez-Salas, Neutron Scattering in Biology: Techniques and Applications, edited by J. Fitter, T. Gutberlet and J. Katsaras (Springer, Berlin, 2006) p. 225.
23.
23T. Gutberlet and M. Lösche, itNeutron Scattering in Biology: Techniques and Applications, edited by J. Fitter, T. Gutberlet and J. Katsaras (Springer, Berlin, 2006) p. 283.
24.
24R. P. Rand and V. A. Parsegian, Biochim. Biophys. Acta 988, 351 (1989).
25.
25G. L. Jendrasiak and J. H. Hasty, Biochim. Biophys. Acta 337, 79 (1974).
26.
26G. L. Jendrasiak and J. C. Mendible, Biochim. Biophys. Acta 424, 140 (1976).
27.
27L. Powers and P. S. Pershan, Biophys. J. 20, 137 (1977).
http://dx.doi.org/10.1016/S0006-3495(77)85540-9
28.
28C. Morrison, Biophys. J. 64, 1063 (1993).
http://dx.doi.org/10.1016/S0006-3495(93)81472-3
29.
29S. Tristram-Nagle, R. Zhang, R. M. Suter, C. R. Worthington, W.-J. Sun and J. F. Nagle, Biophys. J. 64, 1097 (1993).
http://dx.doi.org/10.1016/S0006-3495(93)81475-9
30.
30W. Helfrich, Z. Naturforsch C 33A, 305 (1978).
31.
31E. Evans and V. A. Parsegian, Proc. Natl. Acad. Sci. U.S.A. 83, 7132 (1986).
http://dx.doi.org/10.1073/pnas.83.19.7132
32.
32R. Podgornik and V. A. Parsegian, Biophys. J. 72, 942 (1997).
http://dx.doi.org/10.1016/S0006-3495(97)78728-9
33.
33S. Tristram-Nagle, H. I. Petrache, R. M. Suter and J. F. Nagle, Biophys. J. 74, 1421 (1998).
http://dx.doi.org/10.1016/S0006-3495(98)77854-3
34.
34J. Katsaras, Biophys. J. 73, 2924 (1997).
http://dx.doi.org/10.1016/S0006-3495(97)78320-6
35.
35J. Katsaras and V. A. Raghunathan, Lipid Bilayers: Structure and Interactions, edited by J. Katsaras and T. Gutberlet (Springer, Berlin, 2000) p. 25.
36.
36S. C. Chen, J. M. Sturtevant and B. J. Gaffney, Proc. Natl. Acad. Sci. U.S.A. 77, 5060 (1980).
http://dx.doi.org/10.1073/pnas.77.9.5060
37.
37J. Katsaras, Biophys. J. 75, 2157 (1998).
http://dx.doi.org/10.1016/S0006-3495(98)77658-1
38.
38G. Pabst, J. Katsaras and V. A. Raghunathan, Phys. Rev. Lett. 88, 128101 (2002).
http://dx.doi.org/10.1103/PhysRevLett.88.128101
39.
39D. Constantin, U. Mennicke, C. Li and T. Salditt, Eur. Phys. J. E 12, 283 (2003).
http://dx.doi.org/10.1140/epje/i2003-10063-1
40.
40B. R. Copeland and H. M. McConnel, Biochim. Biophys. Acta 599, 95 (1980).
http://dx.doi.org/10.1016/0005-2736(80)90059-0
41.
41H. W. Meyer, B. Dobner and K. Semmler, Chem. Phys. Lipids 82, 179 (1996).
http://dx.doi.org/10.1016/0009-3084(96)02592-3
42.
42J. T. Woodward and J. A. Zasadzinski, Biophys. J. 72, 964 (1997).
http://dx.doi.org/10.1016/S0006-3495(97)78731-9
43.
43A. Tardieu, V. Luzzati and F. C. Reman, J. Mol. Biol. 75, 711 (1973).
http://dx.doi.org/10.1016/0022-2836(73)90303-3
44.
44M. J. Janiak, D. M. Small and G. G. Shipley, Biochemistry 15, 4575 (1976).
http://dx.doi.org/10.1021/bi00666a005
45.
45D. C. Wack and W. W. Webb, Phys. Rev. A 40, 2712 (1989).
http://dx.doi.org/10.1103/PhysRevA.40.2712
46.
46B. G. Tenchov, H. Yao and I. Hatta, Biophys. J. 56, 757 (1989).
http://dx.doi.org/10.1016/S0006-3495(89)82723-7
47.
47M. P. Hentschel and F. Rustichelli, Phys. Rev. Lett. 66, 903 (1991).
http://dx.doi.org/10.1103/PhysRevLett.66.903
48.
48H. Yao, S. Matuoka, B. Tenchov and I. Hatta, Biophys. J. 59, 252 (1991).
http://dx.doi.org/10.1016/S0006-3495(91)82216-0
49.
49S. Matuoka, H. Yao, S. Kato and I. Hatta, Biophys. J. 64, 1456 (1993).
http://dx.doi.org/10.1016/S0006-3495(93)81512-1
50.
50M. Rappolt and G. Rapp, Eur. Biophys. J. 24, 381 (1996).
http://dx.doi.org/10.1007/BF00576710
51.
51W.-J. Sun, S. Tristram-Nagle, R. M. Suter and J. F. Nagle, Proc. Natl. Acad. Sci. U.S.A. 93, 7008 (1996).
http://dx.doi.org/10.1073/pnas.93.14.7008
52.
52J. A. N. Zasadzinski, Biochim. Biophys. Acta 946, 235 (1988).
http://dx.doi.org/10.1016/0005-2736(88)90398-7
53.
53P. C. Mason, B. D. Gaulin, R. M. Epand, G. D. Wignall and J. S. Lin, Phys. Rev. E 59, 921 (1999).
http://dx.doi.org/10.1103/PhysRevE.59.921
54.
54G. Pabst, J. Katsaras, V. A. Raghunathan and M. Rappolt, Langmuir 19, 1716 (2003).
http://dx.doi.org/10.1021/la026052e
55.
55A. Caillé and C. R. Seances, Acad. Sci. 274, 891 (1972).
56.
56N. Chu, N. Kučerka, Y. Liu, S. Tristram-Nagle and J. F. Nagle, Phys. Rev. E 71, 041904 (2005).
http://dx.doi.org/10.1103/PhysRevE.71.041904
57.
57Y. Liu and J. F. Nagle, Phys. Rev. E 69, 040901R (2004).
http://dx.doi.org/10.1103/PhysRevE.69.040901
58.
58G. Brotons, L. Belloni, T. Zemb and T. Salditt, Europhys. Lett. 75, 992 (2006).
http://dx.doi.org/10.1209/epl/i2006-10207-5
59.
59H. I. Petrache, S. Tristram-Nagle, D. Harries, N. Kučerka, J. F. Nagle and V. A. Parsegian, J. Lipid Res. 47, 302 (2006).
http://dx.doi.org/10.1194/jlr.M500401-JLR200
60.
60J. Pan, S. Tristram-Nagle and J. F. Nagle, Biophys. J. 94, 117 (2008).
http://dx.doi.org/10.1529/biophysj.107.115691
61.
61G. Pabst, M. Rappolt, H. Amenitsch and P. Laggner, Phys. Rev. E 62, 4000 (2000).
http://dx.doi.org/10.1103/PhysRevE.62.4000
62.
62G. Fragneto, T. Charitat, F. Graner, K. Mecke, L. Perino-Gallice and E. Bellet-Amalric, Europhys. Lett. 53, 100 (2001).
http://dx.doi.org/10.1209/epl/i2001-00129-8
63.
63J. Katsaras and R. H. Stinson, Biophys. J. 57, 649 (1990).
http://dx.doi.org/10.1016/S0006-3495(90)82583-2
64.
64J. Katsaras, R. H. Stinson, J. H. Davis and E. J. Kendall, Biophys. J. 59, 645 (1991).
http://dx.doi.org/10.1016/S0006-3495(91)82280-9
65.
65A. Léonard, C. Escrive, M. Laguerre, E. Pebay-Peyroula, W. Néri, T. Pott, J. Katsaras and E. J. Dufourc, Langmuir 17, 2019 (2001).
http://dx.doi.org/10.1021/la001382p
66.
66T. A. Harroun, J. Katsaras and S. R. Wassall, Biochemistry 45, 1227 (2006).
http://dx.doi.org/10.1021/bi0520840
67.
67K. He, S. J. Ludtke, D. L. Worcester and H. W. Huang, Biophys. J. 70, 2659 (1996).
http://dx.doi.org/10.1016/S0006-3495(96)79835-1
68.
68L. Yang, T. M. Weiss, T. A. Harroun, W. T. Heller and H. W. Huang, Biophys. J. 77, 2648 (1999).
http://dx.doi.org/10.1016/S0006-3495(99)77099-2
69.
69J. P. Bradshaw, M. J. M. Darkes, T. A. Harroun, J. Katsaras and R. M. Epand, Biochemistry 39, 6581 (2000).
http://dx.doi.org/10.1021/bi000224u
70.
70J. Strzalka, X. Chen, C. C. Moser, P. L. Dutton, B. M. Ocko and J. K. Blasie, Langmuir 16, 10404 (2000).
http://dx.doi.org/10.1021/la000264z
71.
71L. Yang, T. A. Harroun, T. M. Weiss, L. Ding and H. W. Huang, Biophys. J. 81, 1475 (2001).
http://dx.doi.org/10.1016/S0006-3495(01)75802-X
72.
72K. Hristova, C. E. Dempsey and S. H. White, Biophys. J. 80, 801 (2001).
http://dx.doi.org/10.1016/S0006-3495(01)76059-6
73.
73S. Dante, T. Hauss and N. A. Dencher, Biochemistry 42, 13667 (2003).
http://dx.doi.org/10.1021/bi035056v
74.
74D. Huster, A. Vogel, C. Katzka, H. A. Scheidt, H. Binder, O. Zschörnig, S. Dante, T. Gutberlet, H. Waldmann and K. Arnold, J. Am. Chem. Soc. 125, 4070 (2003).
http://dx.doi.org/10.1021/ja0289245
75.
75J. Strzalka, E. DiMasi, I. Kuzmenko, T. Gog and J. K. Blasie, Phys. Rev. E 70, 051603 (2004).
http://dx.doi.org/10.1103/PhysRevE.70.051603
76.
76C. Li and T. Salditt, Biophys. J. 91, 3285 (2006).
http://dx.doi.org/10.1529/biophysj.106.090118
77.
77P. L. Yeagle, Cholesterol in Membrane Models, edited by L. Finegold (CRC, Boca Raton, FL, 1993) p. 1.
78.
78L. L. Smith, Free Radic Biol. Med. 11, 47 (1991).
http://dx.doi.org/10.1016/0891-5849(91)90187-8
79.
79R. J. Petrie, P. P. M. Schnetkamp, K. D. Patel, M. Awasthi-Kalia and J. P.A. Deans, J. Immunol. 165, 1220 (2000).
80.
80A. Papanikolaou, A. Papafotika, C. Murphy, T. Papamarcaki, O. Tsolas, M. Drab, T. V. Kurzchalia, M. Kasper and S. Christoforidis, J. Biol. Chem. 280, 26406 (2005).
http://dx.doi.org/10.1074/jbc.M413927200
81.
81T. H. Haines, Prog. Lipid Res. 40, 299 (2001).
http://dx.doi.org/10.1016/S0163-7827(01)00009-1
82.
82M. R. Brzustowicz, W. Stillwell and S. R. Wassall, FEBS Lett. 451, 197 (1999).
http://dx.doi.org/10.1016/S0014-5793(99)00567-0
83.
83S. L. Niu and B. J. Litman, Biophys. J. 83, 3408 (2002).
http://dx.doi.org/10.1016/S0006-3495(02)75340-X
84.
84M. R. Brzustowicz, V. Cherezov, M. Zerouga, M. Caffrey, W. Stillwell and S. R. Wassall, Biochemistry 41, 12509 (2002).
http://dx.doi.org/10.1021/bi0262808
85.
85M. R. Brzustowicz, V. Cherezov, M. Caffrey, W. Stillwell and S. R. Wassall, Biophys. J. 82, 285 (2002).
http://dx.doi.org/10.1016/S0006-3495(02)75394-0
86.
86M. C. Pitman, F. Suits, A. D. MacKerell and S. E. Feller, Biochemistry 43, 15318 (2004).
http://dx.doi.org/10.1021/bi048231w
87.
87J. R. Silvius, Biochim. Biophys. Acta 1610, 174 (2003).
http://dx.doi.org/10.1016/S0005-2736(03)00016-6
88.
88K. Simons and E. Ikonen, Nature London 387, 569 (1997).
http://dx.doi.org/10.1038/42408
89.
89D. A. Brown and E. London, J. Biol. Chem. 275, 17221 (2000).
http://dx.doi.org/10.1074/jbc.R000005200
90.
90L. J. Pike, J. Lipid Res. 47, 1597 (2006).
http://dx.doi.org/10.1194/jlr.E600002-JLR200
91.
91S. R. Wassall, M. R. Brzustowicz, S. R. Shaikh, V. Cherezov, M. Caffrey and W. Stillwell, Chem. Phys. Lipids 132, 79 (2004).
92.
92T. A. Harroun, J. Katsaras and S. R. Wassall, Biochemistry 47, 7090 (2008).
http://dx.doi.org/10.1021/bi800123b
93.
93N. P. Franks, J. Mol. Biol. 100, 345 (1976).
http://dx.doi.org/10.1016/S0022-2836(76)80067-8
94.
94D. L. Worcester and N. P. Franks, J. Mol. Biol. 100, 359 (1976).
http://dx.doi.org/10.1016/S0022-2836(76)80068-X
95.
95S. R. Shaikh, A. C. Dumaual, A. Castillo, D. LoCascio, R. A. Siddiqui, W. Stillwell and S. R. Wassall, Biophys. J. 87, 1752 (2004).
http://dx.doi.org/10.1529/biophysj.104.044552
96.
96W. Stillwell, S. R. Shaikh, M. Zerouga, R. Siddiqui and S. R. Wassall, Reprod. Nutr. Dev. 45, 559 (2005).
http://dx.doi.org/10.1051/rnd:2005046
97.
97S. J. Marrink, A. H. Vries, T. A. Harroun, J. Katsaras and S. R. Wassall, J. Am. Chem. Soc. 130, 10 (2008).
http://dx.doi.org/10.1021/ja076641c
98.
98N. Kučerka, J. D. Perlmutter, J. Pan, S. Tristram-Nagle, J. Katsaras and J. N. Sachs, Biophys. J. 95, 2792 (2008).
http://dx.doi.org/10.1529/biophysj.107.122465
99.
99H. R. Knapp, F. Hullin and N. Salem, J. Lipid Res. 35, 1283 (1994).
100.
100W. D. Sweet and F. Schroeder, FEBS Lett. 229, 188 (1988).
http://dx.doi.org/10.1016/0014-5793(88)80824-X
101.
101S. Snyder, D. Kim and T. J. McIntosh, Biochemistry 38, 10758 (1999).
http://dx.doi.org/10.1021/bi990867d
102.
102T. Abraham, S. R. Schooling, M.-P. Nieh, N. Kučerka, T. J. Beveridge and J. Katsaras, J. Phys. Chem. B 111, 2477 (2007).
http://dx.doi.org/10.1021/jp066012+
103.
103N. Kučerka, M.-P Nieh, T. A. Harroun, S. R. Schooling, E. Pappne-Szabo, J. Pencer, E. A. Nicholson, T. J. Beveridge and J. Katsaras, J. Phys. Chem. B 112, 8057 (2008).
http://dx.doi.org/10.1021/jp8027963
104.
104S. Chen, C. Liao, H. Huang, T. Weiss, M. Bellissent-Funel and F. Sette, Phys. Rev. Lett. 86, 740 (2001).
http://dx.doi.org/10.1103/PhysRevLett.86.740
105.
105M. C. Rheinstädter, C. Ollinger, G. Fragneto and T. Salditt, Physica B (Amsterdam) 350, 136 (2004).
http://dx.doi.org/10.1016/j.physb.2004.04.060
106.
106G. Fragneto and M. Rheinstädter, C. R. Phys. 8, 865 (2007).
http://dx.doi.org/10.1016/j.crhy.2007.09.003
107.
107S. König, T. M. Bayerl, G. Coddens, D. Richter and E. Sackmann, Biophys. J. 68, 1871 (1995).
http://dx.doi.org/10.1016/S0006-3495(95)80364-4
108.
108W. Pfeiffer, S. Konig, J. F. Legrand, T. Bayerl, D. Richter and E. Sackmann, Europhys. Lett. 23, 457 (1993).
http://dx.doi.org/10.1209/0295-5075/23/6/013
109.
109M. C. Rheinstädter, C. Ollinger, G. Fragneto, F. Demmel and T. Salditt, Phys. Rev. Lett. 93, 108107 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.108107
110.
110M. Tarek, D. J. Tobias, S.-H. Chen and M. L. Klein, Phys. Rev. Lett. 87, 238101 (2001).
http://dx.doi.org/10.1103/PhysRevLett.87.238101
111.
111J. S. Hub, T. Salditt, M. C. Rheinstädter and B. L. deGroot, Biophys. J. 93, 3156 (2007).
http://dx.doi.org/10.1529/biophysj.107.104885
112.
112E. Sackmann and M. Tanaka, Trends Biotechnol. 18, 58 (2000).
http://dx.doi.org/10.1016/S0167-7799(99)01412-2
113.
113W. Knoll, C. W. Frank, C. Heibel, R. Naumann, A. Offenhausser, J. Ruhe, E. K. Schmidt, W. W. Shen and A. Sinner, Rev. Mol. Biotechnol. 74, 137 (2000).
http://dx.doi.org/10.1016/S1389-0352(00)00012-X
114.
114T. Hianik, Rev. Mol. Biotechnol. 74, 189 (2000).
http://dx.doi.org/10.1016/S1389-0352(00)00015-5
115.
115S. G. Boxer, Curr. Opin. Chem. Biol. 4, 704 (2000).
http://dx.doi.org/10.1016/S1367-5931(00)00139-3
116.
116B. Bechinger, Curr. Opin. Chem. Biol. 4, 639 (2000).
http://dx.doi.org/10.1016/S1367-5931(00)00143-5
http://aip.metastore.ingenta.com/content/avs/journal/bip/3/2/10.1116/1.2992133
Loading
/content/avs/journal/bip/3/2/10.1116/1.2992133
Loading

Data & Media loading...

Loading

Full text loading...

true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=avspublications.org/3/2/10.1116/1.2992133&pageURL=http://scitation.aip.org/content/avs/journal/bip/3/2/10.1116/1.2992133'
Right1,Right2,Right3,