1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
oa
Polymer brushes and self-assembled monolayers: Versatile platforms to control cell adhesion to biomaterials (Review)
Rent:
Rent this article for
Access full text Article
/content/avs/journal/bip/4/2/10.1116/1.3089252
1.
1J. M. Anderson, Annu. Rev. Mater Res. 31, 81 (2001).
http://dx.doi.org/10.1146/annurev.matsci.31.1.81
2.
2N. P. Ziats, K. M. Miller and J. M. Anderson, Biomaterials 9, 5 (1988).
http://dx.doi.org/10.1016/0142-9612(88)90063-4
3.
3T. W. Bauer and J. Schils, Skeletal Radiol. 28, 483 (1999).
http://dx.doi.org/10.1007/s002560050552
4.
4T. Albrektsson, P. I. Branemark, H. A. Hansson, B. Kasemo, K. Larsson, I. Lundstrom, D. H. McQueen and R. Skalak, Ann. Biomed. Eng. 11, 1 (1983).
http://dx.doi.org/10.1007/BF02363944
5.
5L. Ryd, B. E. Albrektsson, L. Carlsson, F. Dansgard, P. Herberts, A. Lindstrand, L. Regner and S. Toksvig-Larsen, J. Bone Joint Surg.-, British 77B, 377 (1995).
6.
6J. M. Anderson, A. Rodriguez and D. T. Chang, Semin. Immunol. 20, 86 (2008).
http://dx.doi.org/10.1016/j.smim.2007.11.004
7.
7S. E. Sakiyama-Elbert and J. A. Hubbell, Annu. Rev. Mater. Res. 31, 183 (2001).
http://dx.doi.org/10.1146/annurev.matsci.31.1.183
8.
8J. A. Hubbell, Curr. Opin. Biotechnol. 14, 551 (2003).
http://dx.doi.org/10.1016/j.copbio.2003.09.004
9.
9M. P. Lutolf and J. A. Hubbell, Nat. Biotechnol. 23, 47 (2005).
http://dx.doi.org/10.1038/nbt1055
10.
10R. Langer and D. A. Tirrell, Nature (London) 428, 487 (2004).
http://dx.doi.org/10.1038/nature02388
11.
11R. E. Baier and R. C. Dutton, J. Biomed. Mater. Res. 3, 191 (1969).
http://dx.doi.org/10.1002/jbm.820030115
12.
12J. D. Andrade and V. Hlady, Adv. Polym. Sci. 79, 1 (1986).
13.
13J. L. Brash, ACS Symp. Ser. 343, 490 (1987).
http://dx.doi.org/10.1021/bk-1987-0343.ch030
14.
14J. M. Anderson, T. L. Bonfield and N. P. Ziats, Int. J. Artif. Organs 13, 375 (1990).
15.
15M. Shen and T. A. Horbett, J. Biomed. Mater. Res. 57, 336 (2001).
http://dx.doi.org/10.1002/1097-4636(20011205)57:3<336::AID-JBM1176>3.0.CO;2-E
16.
16W. B. Tsai, J. M. Grunkemeier and T. A. Horbett, J. Biomed. Mater. Res. 44, 130 (1999).
http://dx.doi.org/10.1002/(SICI)1097-4636(199902)44:2<130::AID-JBM2>3.0.CO;2-9
17.
17F. Grinnell and M. K. Feld, J. Biomed. Mater. Res. 15, 363 (1981).
http://dx.doi.org/10.1002/jbm.820150308
18.
18K. L. Prime and G. M. Whitesides, Science 252, 1164 (1991).
http://dx.doi.org/10.1126/science.252.5009.1164
19.
19K. Lewandowska, E. Pergament, C. N. Sukenik and L. A. Culp, J. Biomed. Mater. Res. 26, 1343 (1992).
http://dx.doi.org/10.1002/jbm.820261007
20.
20A. J. García and D. Boettiger, Biomaterials 20, 2427 (1999).
http://dx.doi.org/10.1016/S0142-9612(99)00170-2
21.
21V. A. Tegoulia and S. L. Cooper, J. Biomed. Mater. Res. 50, 291 (2000).
http://dx.doi.org/10.1002/(SICI)1097-4636(20000605)50:3<291::AID-JBM2>3.0.CO;2-1
22.
22B. G. Keselowsky, D. M. Collard and A. J. García, J. Biomed. Mater. Res. 66A, 247 (2003).
http://dx.doi.org/10.1002/jbm.a.10537
23.
23M. Mrksich and G. M. Whitesides, Annu. Rev. Biophys. Biomol. Struct. 25, 55 (1996).
http://dx.doi.org/10.1146/annurev.bb.25.060196.000415
24.
24J. Staffan, Molecular Components and Interactions (Harwood Academic, Netherlands, 1996) 2nd ed. p. 68.
25.
25T. Sakai, M. Larsen and K. M. Yamada, Nature (London) 423, 876 (2003).
http://dx.doi.org/10.1038/nature01712
26.
26X. Y. Zhu, M. Ohtsubo, R. M. Bohmer and J. M. Roberts, J. Cell Biol. 133, 391 (1996).
http://dx.doi.org/10.1083/jcb.133.2.391
27.
27N. Boudreau, C. Myers and M. J. Bissell, Trends Cell Biol. 5, 1 (1995).
http://dx.doi.org/10.1016/S0962-8924(00)88924-2
28.
28J. Sottile, J. Schwarzbauer, J. Selegue and D. F. Mosher, J. Biol. Chem. 266, 12840 (1991).
29.
29J. L. Sechler and J. E. Schwarzbauer, J. Biol. Chem. 273, 25533 (1998).
http://dx.doi.org/10.1074/jbc.273.40.25533
30.
30S. Bourdoulous, G. Orend, D. A. MacKenna, R. Pasqualini and E. Ruoslahti, J. Cell Biol. 143, 267 (1998).
http://dx.doi.org/10.1083/jcb.143.1.267
31.
31S. A. Corbett, C. L. Wilson and J. E. Schwarzbauer, Blood 88, 158 (1996).
32.
32J. L. Sechler, S. A. Corbett, M. B. Wenk and J. E. Schwarzbauer, Ann. N. Y. Acad. Sci. 857, 143 (1998).
http://dx.doi.org/10.1111/j.1749-6632.1998.tb10114.x
33.
33C. H. Streuli and M. J. Bissell, J. Cell Biol. 110, 1405 (1990).
http://dx.doi.org/10.1083/jcb.110.4.1405
34.
34J. C. Adams and F. M. Watt, Development 117, 1183 (1993).
35.
35D. J. Mooney, R. Langer and D. E. Ingber, J. Cell Sci. 108, 2311 (1995).
36.
36R. O. Hynes, J. E. Schwarzbauer and J. W. Tamkun, Ciba Found Symp. 108, 75 (1984).
37.
37J. E. Schwarzbauer, R. S. Patel, D. Fonda and R. O. Hynes, EMBO J. 6, 2573 (1987).
38.
38J. E. Schwarzbauer, J. I. Paul and R. O. Hynes, Proc. Natl. Acad. Sci. U.S.A. 82, 1424 (1985).
http://dx.doi.org/10.1073/pnas.82.5.1424
39.
39M. W. Mosesson and R. A. Umfleet, J. Biol. Chem. 245, 5728 (1970).
40.
40I. Wierzbicka-Patynowski and J. E. Schwarzbauer, J. Cell Sci. 116, 3269 (2003).
http://dx.doi.org/10.1242/jcs.00670
41.
41Y. Mao and J. E. Schwarzbauer, Matrix Biol. 24, 389 (2005).
http://dx.doi.org/10.1016/j.matbio.2005.06.008
42.
42K. C. Ingham, S. A. Brew and B. S. Isaacs, J. Biol. Chem. 263, 4624 (1988).
43.
43E. L. George, E. N. Georges-Labouesse, R. S. Patel-King, H. Rayburn and R. O. Hynes, Development 119, 1079 (1993).
44.
44E. Ruoslahti and M. D. Pierschbacher, Science 238, 491 (1987).
http://dx.doi.org/10.1126/science.2821619
45.
45C. G. Knight, L. F. Morton, D. J. Onley, A. R. Peachey, A. J. Messent, P. A. Smethurst, D. S. Tuckwell, R. W. Farndale and M. J. Barnes, J. Biol. Chem. 273, 33287 (1998).
http://dx.doi.org/10.1074/jbc.273.50.33287
46.
46C. G. Knight, L. F. Morton, A. R. Peachey, D. S. Tuckwell, R. W. Farndale and M. J. Barnes, J. Biol. Chem. 275, 35 (2000).
http://dx.doi.org/10.1074/jbc.275.1.35
47.
47C. D. Reyes and A. J. García, J. Biomed. Mater. Res. 69A, 591 (2004).
http://dx.doi.org/10.1002/jbm.a.30034
48.
48J. A. Hubbell, Curr. Opin. Biotechnol. 10, 123 (1999).
http://dx.doi.org/10.1016/S0958-1669(99)80021-4
49.
49U. Hersel, C. Dahmen and H. Kessler, Biomaterials 24, 4385 (2003).
http://dx.doi.org/10.1016/S0142-9612(03)00343-0
50.
50K. M. Yamada, J. Biol. Chem. 266, 12809 (1991).
51.
51A. K. Dillow and M. Tirrell, Curr. Opin. Solid State Mater. Sci. 3, 252 (1998).
http://dx.doi.org/10.1016/S1359-0286(98)80099-5
52.
152H. Shin, S. Jo and A. G. Mikos, J. Biomed. Mater. Res. 61, 169 (2002).
http://dx.doi.org/10.1002/jbm.10193
53.
53S. M. Sagnella, F. Kligman, E. H. Anderson, J. E. King, G. Murugesan, R. E. Marchant and K. Kottke-Marchant, Biomaterials 25, 1249 (2004).
http://dx.doi.org/10.1016/S0142-9612(03)00634-3
54.
54G. Maheshwari, G. Brown, D. A. Lauffenburger, A. Well and L. G. Griffith, J. Cell Sci. 113, 1677 (2000).
55.
55A. Rezania and K. E. Healy, J. Biomed. Mater. Res. 52, 595 (2000).
http://dx.doi.org/10.1002/1097-4636(20001215)52:4<595::AID-JBM3>3.0.CO;2-3
56.
56T. A. Barber, S. L. Golledge, D. G. Castner and K. E. Healy, J. Biomed. Mater. Res. 64A, 38 (2003).
http://dx.doi.org/10.1002/jbm.a.10321
57.
57S. E. Ochsenhirt, E. Kokkoli, J. B. McCarthy and M. Tirrell, Biomaterials 27, 3863 (2006).
http://dx.doi.org/10.1016/j.biomaterials.2005.12.012
58.
58S. Aota, M. Nomizu and K. M. Yamada, J. Biol. Chem. 269, 24756 (1994).
59.
59A. K. Dillow, S. E. Ochsenhirt, J. B. McCarthy, G. B. Fields and M. Tirrell, Biomaterials 22, 1493 (2001).
http://dx.doi.org/10.1016/S0142-9612(00)00304-5
60.
60H. D. Maynard, S. Y. Okada and R. H. Grubbs, J. Am. Chem. Soc. 123, 1257 (2001).
61.
61A. Mardilovich and E. Kokkoli, Biomacromolecules 5, 950 (2004).
http://dx.doi.org/10.1021/bm0344351
62.
62Y. Z. Feng and M. Mrksich, Biochemistry 43, 15811 (2004).
http://dx.doi.org/10.1021/bi049174+
63.
63D. S. W. Benoit and K. S. Anseth, Biomaterials 26, 5209 (2005).
http://dx.doi.org/10.1016/j.biomaterials.2005.01.045
64.
64M. Pierschbacher, E. G. Hayman and E. Ruoslahti, Proct. Natl. Acad. Sci. U.S.A. 80, 1224 (1983).
http://dx.doi.org/10.1073/pnas.80.5.1224
65.
65S. K. Akiyama, K. Olden and K. M. Yamada, Cancer Metastasis. Rev. 14, 173 (1995).
http://dx.doi.org/10.1007/BF00690290
66.
66B. K. Mann, A. T. Tsai, T. Scott-Burden and J. L. West, Biomaterials 20, 2281 (1999).
http://dx.doi.org/10.1016/S0142-9612(99)00158-1
67.
67J. Lahiri, L. Isaacs, B. Grzybowski, J. D. Carbeck and G. M. Whitesides, Langmuir 15, 2055 (1999).
http://dx.doi.org/10.1021/la9811970
68.
68N. T. Flynn, T. N. T. Tran, M. J. Cima and R. Langer, Langmuir 19, 10909 (2003).
http://dx.doi.org/10.1021/la035331e
69.
69C. M. Nelson, S. Raghavan, J. L. Tan and C. S. Chen, Langmuir 19, 1493 (2003).
http://dx.doi.org/10.1021/la026178b
70.
70H. Ma, M. Wells, T. P. Beebe and A. Chilkoti, Adv. Funct. Mater. 16, 640 (2006).
http://dx.doi.org/10.1002/adfm.200500426
71.
71M. Mrksich, L. E. Dike, J. Tien, D. E. Ingber and G. M. Whitesides, Exp. Cell Res. 235, 305 (1997).
http://dx.doi.org/10.1006/excr.1997.3668
72.
72G. K. Jennings and P. E. Laibinis, Langmuir 12, 6173 (1996).
http://dx.doi.org/10.1021/la960758p
73.
73C. Amato, S. Devillers, P. Calas, J. Delhalle and Z. Mekhalif, Langmuir 24, 10879 (2008).
http://dx.doi.org/10.1021/la800496d
74.
74J. J. Stapleton, T. A. Daniel, S. Uppili, O. M. Cabarcos, J. Naciri, R. Shashidhar and D. L. Allara, Langmuir 21, 11061 (2005).
http://dx.doi.org/10.1021/la051094z
75.
75T. Laiho, J. Lukkari, M. Meretoja, K. Laajalehto, J. Kankare and J. A. Leiro, Surf. Sci. 584, 83 (2005).
http://dx.doi.org/10.1016/j.susc.2005.02.059
76.
76W. Tu, K. Takai, K.-I. Fukui, A. Miyazaki and T. Enoki, J. Phys. Chem. B 107, 10134 (2003).
http://dx.doi.org/10.1021/jp034738p
77.
77D. Appelhans, D. Ferse, H.-J. P. Adler, W. Plieth, A. Fikus, D. Grundke, F.-J. Schmitt, T. Bayer and B. Adolphi, Colloids Surf. 161, 203 (2000).
http://dx.doi.org/10.1016/S0927-7757(99)00338-6
78.
78M. B. Smith, K. Efimenko, D. A. Fischer, S. E. Lappi, P. K. Kilpatrick and J. Genzer, Langmuir 23, 673 (2007).
http://dx.doi.org/10.1021/la062475v
79.
79E. Hoque, J. DeRose, P. Hoffmann, B. Bhushan and H. J. Mathieu, J. Phys. Chem. C 111, 3956 (2007).
http://dx.doi.org/10.1021/jp066101m
80.
80J. E. Raynor, T. A. Petrie, A. J. García and D. M. Collard, Adv. Mater. (Weinheim, Ger.) 19, 1724 (2007).
http://dx.doi.org/10.1002/adma.200602129
81.
81M. Gnauck, E. Jaehne, T. Blaettler, S. Tosatti, M. Textor and H.-J. P. Adler, Langmuir 23, 377 (2007).
http://dx.doi.org/10.1021/la0606648
82.
82H.-B. Liu, N. V. Venkataraman, N. D. Spencer, M. Textor and S.-J. Xiao, ChemPhysChem 9, 1979 (2008).
http://dx.doi.org/10.1002/cphc.200800381
83.
83K. Fan, L. Lin, J. L. Dalsin and P. B. Messersmith, J. Am. Chem. Soc. 127, 15843 (2005).
http://dx.doi.org/10.1021/ja0532638
84.
84N. Tillman, A. Ulman, J. S. Schildkraut and T. L. Penner, J. Am. Chem. Soc. 110, 6136 (1988).
http://dx.doi.org/10.1021/ja00226a031
85.
85H. Ma, D. Li, T. Sheng, B. Zhao and A. Chilkoti, Langmuir 22, 3751 (2006).
http://dx.doi.org/10.1021/la052796r
86.
86C. D. Bain, E. B. Troughton, Y. T. Tao, J. Evall, G. M. Whitesides and R. G. Nuzzo, J. Am. Chem. Soc. 111, 321 (1989).
http://dx.doi.org/10.1021/ja00183a049
87.
87C. D. Bain, J. Evall and G. M. Whitesides, J. Am. Chem. Soc. 111, 7155 (1989).
http://dx.doi.org/10.1021/ja00200a039
88.
88C. D. Bain and G. M. Whitesides, J. Am. Chem. Soc. 111, 7164 (1989).
http://dx.doi.org/10.1021/ja00200a040
89.
89M. C. L. Martins, B. D. Ratner and M. A. Barbosa, J. Biomed. Mater. Res. 67A, 158 (2003).
http://dx.doi.org/10.1002/jbm.a.10096
90.
90M. D. Porter, T. B. Bright, D. L. Allara and C. E. D. Chidsey, J. Am. Chem. Soc. 109, 3559 (1987).
http://dx.doi.org/10.1021/ja00246a011
91.
91G. E. Poirier and E. D. Pylant, Science 272, 1145 (1996).
http://dx.doi.org/10.1126/science.272.5265.1145
92.
92R. G. Nuzzo, B. R. Zegarski and L. H. Dubois, J. Am. Chem. Soc. 109, 733 (1987).
http://dx.doi.org/10.1021/ja00237a017
93.
93A. Ulman, Chem. Rev. (Washington, D.C.) 96, 1533 (1996).
94.
94L. H. Dubois and R. G. Nuzzo, Annu. Rev. Phys. Chem. 43, 437 (1992).
http://dx.doi.org/10.1146/annurev.pc.43.100192.002253
95.
95A. Ulman, J. F. Kang, Y. Shnidman, S. Liao, R. Jordan, G. Y. Choi, J. Zaccaro, A. S. Myerson, M. Rafailovich, J. Sokolov and C. Fleischer, J. Biotechnol. 74, 175 (2000).
96.
96P. E. Laibinis, G. M. Whitesides, D. L. Allara, Y. T. Tao, A. N. Parikh and R. G. Nuzzo, J. Am. Chem. Soc. 113, 7152 (1991).
http://dx.doi.org/10.1021/ja00019a011
97.
97L. Pardo, T. Boland and J. Colloid, Interface Sci. 257, 116 (2003).
http://dx.doi.org/10.1016/S0021-9797(02)00022-X
98.
98Y. Jiang, Z. Wang, X. Yu, F. Shi, H. Yu and X. Zhang, Langmuir 21, 1986 (2005).
http://dx.doi.org/10.1021/la047491b
99.
99M. Mrksich, J. R. Grunwell and G. M. Whitesides, J. Am. Chem. Soc. 117, 12009 (1995).
http://dx.doi.org/10.1021/ja00153a029
100.
100C. D. Hodneland, Y. S. Lee, D. H. Min and M. Mrksich, Proc. Natl. Acad. Sci. U.S.A. 99, 5048 (2002).
http://dx.doi.org/10.1073/pnas.072685299
101.
101K. E. Nelson, L. Gamble, L. S. Jung, M. S. Boeckl, E. Naeemi, S. L. Golledge, T. Sasaki, D. G. Castner, C. T. Campbell and P. S. Stayton, Langmuir 17, 2807 (2001).
http://dx.doi.org/10.1021/la001111e
102.
102M. Kato and M. Mrksich, J. Am. Chem. Soc. 126, 6504 (2004).
http://dx.doi.org/10.1021/ja039058e
103.
103J. Lahann, S. Mitragotri, T. N. Tran, H. Kaido, J. Sundaram, I. S. Choi, S. Hoffer, G. A. Somorjai and R. Langer, Science 299, 371 (2003).
http://dx.doi.org/10.1126/science.1078933
104.
104C. D. Hodneland and M. Mrksich, J. Am. Chem. Soc. 122, 4235 (2000).
http://dx.doi.org/10.1021/ja000419p
105.
105Y.-Y. Luk, M. Kato and M. Mrksich, Langmuir 16, 9604 (2000).
http://dx.doi.org/10.1021/la0004653
106.
106G. B. Sigal, M. Mrksich and G. M. Whitesides, J. Am. Chem. Soc. 120, 3464 (1998).
http://dx.doi.org/10.1021/ja970819l
107.
107J. R. Capadona, D. M. Collard and A. J. García, Langmuir 19, 1847 (2003).
http://dx.doi.org/10.1021/la026244+
108.
108E. Ostuni, R. G. Chapman, M. N. Liang, G. Meluleni, G. Pier, D. E. Ingber and G. M. Whitesides, Langmuir 17, 6336 (2001).
http://dx.doi.org/10.1021/la010552a
109.
109L. Deng, M. Mrksich and G. M. Whitesides, J. Am. Chem. Soc. 118, 5136 (1996).
http://dx.doi.org/10.1021/ja960461d
110.
110K. M. Evans-Nguyen and M. H. Schoenfisch, Langmuir 21, 1691 (2005).
http://dx.doi.org/10.1021/la047303h
111.
111C. S. Chen, M. Mrksich, S. Huang, G. M. Whitesides and D. E. Ingber, Science 276, 1425 (1997).
http://dx.doi.org/10.1126/science.276.5317.1425
112.
112C. S. Chen, M. Mrksich, S. Huang, G. M. Whitesides and D. E. Ingber, Biotechnol. Prog. 14, 356 (1998).
http://dx.doi.org/10.1021/bp980031m
113.
113J. Lahiri, E. Ostuni and G. M. Whitesides, Langmuir 15, 2055 (1999).
http://dx.doi.org/10.1021/la9811970
114.
114J. C. Love, D. B. Wolfe, K. E. Paul, M. L. Chabinyc, R. G. Nuzzo and G. M. Whitesides, Abstr. Pap. — Am. Chem. Soc. 224, U431 (2002).
115.
115N. D. Gallant, J. R. Capadona, A. B. Frazier, D. M. Collard and A. J. García, Langmuir 18, 5579 (2002).
http://dx.doi.org/10.1021/la025554p
116.
116T. A. Petrie, J. R. Capadona, C. D. Reyes and A. J. García, Biomaterials 27, 5459 (2006).
http://dx.doi.org/10.1016/j.biomaterials.2006.06.027
117.
117K. L. Prime and G. M. Whitesides, J. Am. Chem. Soc. 115, 10714 (1993).
http://dx.doi.org/10.1021/ja00076a032
118.
118C. Pale-Grosdemange, E. S. Simon, K. L. Prime and G. M. Whitesides, J. Am. Chem. Soc. 113, 12 (1991).
http://dx.doi.org/10.1021/ja00001a002
119.
119R. L. C. Wang, H. J. Kreuzer and M. Grunze, J. Phys. Chem. 101, 9767 (1997).
http://dx.doi.org/10.1021/jp9716952
120.
120B. Zhu, T. Eurell, R. Gunawan and D. Leckband, J. Biomed. Mater. Res. 56, 406 (2001).
http://dx.doi.org/10.1002/1097-4636(20010905)56:3<406::AID-JBM1110>3.0.CO;2-R
121.
121J. R. Capadona, T. A. Petrie, K. P. Fears, R. A. Latour, D. M. Collard and A. J. García, Adv. Mater. (Weinheim, Ger.) 17, 2604 (2005).
http://dx.doi.org/10.1002/adma.200500959
122.
122M. Colombi, N. Zoppi, G. Petro, E. Marchina, R. Gardella, D. Tavian, S. Ferraboli and S. Barlati, J. Biol. Chem. 278, 14346 (2003).
http://dx.doi.org/10.1074/jbc.M211997200
123.
123B. G. Keselowsky, D. M. Collard and A. J. García, J. Biomed. Mater. Res. 39, 61 (2003).
124.
124B. G. Keselowsky, D. M. Collard and A. J. García, Biomaterials 25, 5947 (2004).
http://dx.doi.org/10.1016/j.biomaterials.2004.01.062
125.
125J. Emsley, C. G. Knight, R. W. Farndale, M. J. Barnes and R. C. Liddington, Cell 101, 47 (2000).
http://dx.doi.org/10.1016/S0092-8674(00)80622-4
126.
126A. J. García, J. E. Schwarzbauer and D. Boettiger, Biochemistry 41, 9063 (2002).
http://dx.doi.org/10.1021/bi025752f
127.
127A. J. García, F. Huber and D. Boettiger, J. Biol. Chem. 273, 10988 (1998).
http://dx.doi.org/10.1074/jbc.273.18.10988
128.
128A. J. García, P. Ducheyne and D. Boettiger, Biomaterials 18, 1091 (1997).
http://dx.doi.org/10.1016/S0142-9612(97)00042-2
129.
129N. D. Gallant, K. E. Michael and A. J. García, Mol. Biol. Cell 16, 4329 (2005).
http://dx.doi.org/10.1091/mbc.E05-02-0170
130.
130B. Zhao and W. J. Brittain, Prog. Polym. Sci. 25, 677 (2000).
http://dx.doi.org/10.1016/S0079-6700(00)00012-5
131.
131T. A. Barber, G. M. Hurbers, S. Park, M. Gilbert and K. E. Healy, Biomaterials 26, 6897 (2005).
http://dx.doi.org/10.1016/j.biomaterials.2005.04.043
132.
132L. Andruzzi, W. Senaratne, A. Hexemer, E. D. Sheets, B. Ilic, E. J. Kramer, B. Baird and C. K. Ober, Langmuir 21, 2495 (2005).
http://dx.doi.org/10.1021/la047574s
133.
133J. L. Dalsin, L. Lin, S. Tosatti, J. Voros, M. Textor and P. B. Messersmith, Langmuir 21, 640 (2005).
http://dx.doi.org/10.1021/la048626g
134.
134Z. Yang, J. A. Galloway and H. Yu, Langmuir 15, 8405 (1999).
http://dx.doi.org/10.1021/la990260y
135.
135D. Bozukova, C. Pagnoulle, M.-C. Pauw-Gillet, S. Desbief, R. Lazzaroni, N. Ruth, R. Jerome and C. Jerome, Biomacromolecules 8, 2379 (2007).
http://dx.doi.org/10.1021/bm0701649
136.
136P. Ferreira, A. F. M. Silva, M. I. Pinto and M. H. Gil, J. Mater. Sci.: Mater. Med. 19, 111 (2008).
http://dx.doi.org/10.1007/s10856-007-3117-3
137.
137R. Quirk and R. Mathers, Polym. Bull. 45, 471 (2001).
http://dx.doi.org/10.1007/s002890170100
138.
138M. D. K. Ingall, C. H. Honeyman, J. V. Mercure, P. A. Bianconi and R. R. Kunz, J. Am. Chem. Soc. 121, 3607 (1999).
http://dx.doi.org/10.1021/ja9833927
139.
139X. Fan, Q. Zhou, C. Xia, W. Cristofoli, J. Mays and R. Advincula, Langmuir 18, 4511 (2002).
http://dx.doi.org/10.1021/la025556+
140.
140Q. Zhou, X. Fan, C. Xia, J. Mays and R. Advincula, Chem. Mater. 13, 2465 (2001).
http://dx.doi.org/10.1021/cm0101780
141.
141M. Wirth, R. Fairbank and H. Fatunmbi, Science 275, 44 (1997).
http://dx.doi.org/10.1126/science.275.5296.44
142.
142R. Advincula, Adv. Polym. Sci. 197, 107 (2006).
http://dx.doi.org/10.1007/12_066
143.
143N. Tsubokawa and T. Yoshihara, Polym. J. (Tokyo, Jpn.) 23, 177 (1991).
http://dx.doi.org/10.1295/polymj.23.177
144.
144R. Jordan and A. Ulman, J. Am. Chem. Soc. 120, 243 (1998).
http://dx.doi.org/10.1021/ja973392r
145.
145B. Zhao and W. J. Brittain, Macromolecules 33, 342 (2000).
http://dx.doi.org/10.1021/ma9910181
146.
146S. Edmondson, V. L. Osborne and W. T. S. Huck, Chem. Soc. Rev. 33, 14 (2004).
http://dx.doi.org/10.1039/b210143m
147.
147M. D. Rowe-Konopacki and S. G. Boyes, Macromolecules 40, 879 (2007).
http://dx.doi.org/10.1021/ma0623340
148.
148Y. F. Zhou, M. L. Bruening, D. E. Bergbreiter, R. M. Crooks and M. Wells, J. Am. Chem. Soc. 118, 3773 (1996).
http://dx.doi.org/10.1021/ja960142m
149.
149T. S. Kim, R. M. Crooks, M. Tsen and L. Sun, J. Am. Chem. Soc. 117, 3963 (1995).
http://dx.doi.org/10.1021/ja00119a010
150.
150M. Ejaz, S. Yamamoto, K. Ohno, Y. Tsujii and T. Fukuda, Macromolecules 31, 5934 (1998).
http://dx.doi.org/10.1021/ma980240n
151.
151M. Husseman, E. E. Malmstrom, M. McNamara, M. Mate, O. Mecerreyes, D. G. Benoit, J. L. Hedrick, P. Mansky, E. Huang, T. P. Russell and C. J. Hawker, Macromolecules 32, 1424 (1999).
http://dx.doi.org/10.1021/ma981290v
152.
152Y. Nakayama and T. Matsuda, Macromolecules 29, 8622 (1996).
http://dx.doi.org/10.1021/ma9606014
153.
153B. Boer, H. K. Simon, M. P. L. Werts, E. W. Vegte and I. Hadziioannou, Macromolecules 33, 349 (2000).
http://dx.doi.org/10.1021/ma9910944
154.
154K. Matyjaszewski, P. J. Miller, N. Shukla, B. Immaraporn, A. Gelman, B. B. Luokala, T. M. Siclovan, G. Lickelbick, T. Vallant, H. Hoffmann and T. Pakula, Macromolecules 32, 8716 (1999).
http://dx.doi.org/10.1021/ma991146p
155.
155S. J. Lord, S. S. Sheiko, I. LaRue, H.-I. Lee and K. Matyjaszewski, Macromolecules 37, 4235 (2004).
http://dx.doi.org/10.1021/ma035989z
156.
156B. P. Harris, J. K. Kutty, E. W. Fritz, K. Webb, K. J. L. Burg and A. T. Metters, Langmuir 22, 4467 (2006).
http://dx.doi.org/10.1021/la053417x
157.
157X. Wang and P. W. Bohn, Adv. Mater. (Weinheim, Ger.) 19, 515 (2007).
http://dx.doi.org/10.1002/adma.200601516
158.
158M. Husemann, D. Merreceyes, C. J. Hawker, J. L. Hedrick, R. Shah and N. L. Abbott, Angew. Chem., Int. Ed. 38, 647 (1999).
http://dx.doi.org/10.1002/(SICI)1521-3773(19990301)38:5<647::AID-ANIE647>3.0.CO;2-0
159.
160N. L. Jeon, I. S. Choi, G. M. Whitesides, N. Y. Kim, P. E. Laibinis, Y. Harada, K. R. Finnie, G. S. Girolami and R. G. Nuzzo, Appl. Phys. Lett. 75, 4201 (1999).
http://dx.doi.org/10.1063/1.125582
160.
161R. R. Shah, D. Merreceyes, M. Husemann, I. Rees, N. L. Abbott, C. J. Hawker and J. L. Hedrick, Macromolecules 33, 597 (2000).
http://dx.doi.org/10.1021/ma991264c
161.
162B. Zhao, W. J. Brittain, W. Zhou and S. Z. D. Cheng, J. Am. Chem. Soc. 122, 2407 (2000).
http://dx.doi.org/10.1021/ja992465z
162.
163R. A. Sedjo, B. K. Mirous and W. J. Brittain, Macromolecules 33, 1492 (2000).
http://dx.doi.org/10.1021/ma991549p
163.
164B. Zhao and W. J. Brittain, J. Am. Chem. Soc. 121, 3557 (1999).
http://dx.doi.org/10.1021/ja984428y
164.
165H. Ma, J. Hyun, P. Stiller and A. Chilkoti, Adv. Mater. (Weinheim, Ger.) 16, 338 (2004).
http://dx.doi.org/10.1002/adma.200305830
165.
166T. W. Bauer and J. Schils, Skeletal Radiol. 28, 483 (1999).
http://dx.doi.org/10.1007/s002560050552
166.
167R. M. Pilliar, Orthop. Clin. North Am. 36, 113 (2005).
http://dx.doi.org/10.1016/j.ocl.2004.08.001
167.
168P. Ducheyne and J. M. Cuckler, Clin. Orthop. Relat. Res. 276, 102 (1992).
168.
169A. J. García and C. D. Reyes, J. Dent. Res. 84, 407 (2005).
http://dx.doi.org/10.1177/154405910508400502
169.
170D. K. Hanks, L. Ryzhova, N. Y. Shin and J. Brabek, Front. Biosci. 8, 982 (2003).
http://dx.doi.org/10.2741/1114
170.
171Y. Tamura, Y. Takeuchi, M. Suzawa, S. Fukumoto, M. Kato, K. Miyazono and T. Fujita, J. Bone Miner. Res. 16, 1772 (2001).
http://dx.doi.org/10.1359/jbmr.2001.16.10.1772
171.
172P. Ducy, R. Zhang, V. Geoffroy, A. L. Ridall and G. Karsenty, Cell 89, 747 (1997).
http://dx.doi.org/10.1016/S0092-8674(00)80257-3
172.
173X. Sun, J. Liu and M. L. Lee, Anal. Chem. 80, 856 (2008).
http://dx.doi.org/10.1021/ac701948n
173.
174Y. Yao, Y.-Z. Ma, M. Qin, X.-J. Ma, C. Wang and X.-Z. Feng, Colloids Surf., B 66, 233 (2008).
http://dx.doi.org/10.1016/j.colsurfb.2008.06.015
174.
175F. J. Xu, H. Z. Li, J. Li, Y. H. Eric Teo, C. X. Zhu, E. T. Kang and K. G. Neoh, Biosens. Bioelectron. 24, 779 (2008).
175.
176J. E. Raynor, T. A. Petrie, K. P. Fears, R. A. Latour, A. J. García, and D. M. Collard, Biomacromolecules (in press).
176.
177Timothy A. Petrie, Jenny E. Raynor, Catherine D. Reyes, Kellie L. Burns, David M. Collard and Andrés J. García, Biomaterials 29, 2849 (2008).
http://dx.doi.org/10.1016/j.biomaterials.2008.03.036
http://aip.metastore.ingenta.com/content/avs/journal/bip/4/2/10.1116/1.3089252
Loading
/content/avs/journal/bip/4/2/10.1116/1.3089252
Loading

Data & Media loading...

Loading

Full text loading...

true
This is a required field
Please enter a valid email address

Oops! This section does not exist...

Use the links on this page to find existing content.

752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Polymer brushes and self-assembled monolayers: Versatile platforms to control cell adhesion to biomaterials (Review)
http://aip.metastore.ingenta.com/content/avs/journal/bip/4/2/10.1116/1.3089252
10.1116/1.3089252
SEARCH_EXPAND_ITEM