Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/avs/journal/bip/5/3/10.1116/1.3462969
1.
1D. Ghosh and L. M. Poisson, Genomics 93, 13 (2009).
http://dx.doi.org/10.1016/j.ygeno.2008.07.006
2.
2M. Uttamchandani, D. P. Walsh, S. Q. Yao and Y. T. Chang, Curr. Opin. Chem. Biol. 9, 4 (2005).
http://dx.doi.org/10.1016/j.cbpa.2004.12.005
3.
3G. MacBeath and A. Saghatelian, Curr. Opin. Chem. Biol. 13, 501 (2009).
http://dx.doi.org/10.1016/j.cbpa.2009.10.008
4.
4P. B. McGarvey et al., PLoS ONE 4, e7162 (2009).
http://dx.doi.org/10.1371/journal.pone.0007162
5.
5M. Uttamchandani, C. H. Lu and S. Q. Yao, Acc. Chem. Res. 42, 1183 (2009).
http://dx.doi.org/10.1021/ar9000586
6.
6M. Uttamchandani and S. Q. Yao, Curr. Pharm. Des. 14, 2428 (2008).
http://dx.doi.org/10.2174/138161208785777450
7.
7D. A. Hall, J. Ptacek and M. Snyder, Mech. Ageing Dev. 128, 161 (2007).
http://dx.doi.org/10.1016/j.mad.2006.11.021
8.
8R. P. Ekins, J. Pharm. Biomed. Anal. 7, 155 (1989).
http://dx.doi.org/10.1016/0731-7085(89)80079-2
9.
9Y. Hu, M. Uttamchandani and S. Q. Yao, Comb. Chem. High Throughput Screening 9, 203 (2006).
http://dx.doi.org/10.2174/138620706776055467
10.
10M. Schena, D. Shalon, R. W. Davis and P. O. Brown, Science 270, 467 (1995).
http://dx.doi.org/10.1126/science.270.5235.467
11.
11M. Schena, D. Shalon, R. Heller, A. Chai, P. O. Brown and R. W. Davis, Proc. Natl. Acad. Sci. U.S.A. 93, 10614 (1996).
http://dx.doi.org/10.1073/pnas.93.20.10614
12.
12U. Maskos and E. M. Southern, Nucleic Acids Res. 21, 2269 (1993).
http://dx.doi.org/10.1093/nar/21.9.2269
13.
13U. Maskos and E. M. Southern, Nucleic Acids Res. 21, 2267 (1993).
http://dx.doi.org/10.1093/nar/21.9.2267
14.
14M. Uttamchandani, J. L. Neo, B. N. Ong and S. Moochhala, Trends Biotechnol. 27, 53 (2009).
http://dx.doi.org/10.1016/j.tibtech.2008.09.004
15.
15S. M. Yoo, J. H. Choi, S. Y. Lee and N. C. Yoo, J. Microbiol. Biotechnol. 19, 635 (2009).
16.
16U. Bilitewski, Methods Mol. Biol. 509, 1 (2009).
http://dx.doi.org/10.1007/978-1-59745-372-1_1
17.
17M. F. Templin, D. Stoll, M. Schrenk, P. C. Traub, C. F. Vohringer and T. O. Joos, Trends Biotechnol. 20, 160 (2002).
http://dx.doi.org/10.1016/S0167-7799(01)01910-2
18.
18M. Uttamchandani, J. Wang and S. Q. Yao, Mol. Biosyst. 2, 58 (2006).
http://dx.doi.org/10.1039/b513935j
19.
19P. Bertone and M. Snyder, FEBS J. 272, 5400 (2005).
http://dx.doi.org/10.1111/j.1742-4658.2005.04970.x
20.
20J. Wang, M. Uttamchandani, L. P. Sun, and S. Q. Yao, Chem. Commun. (Cambridge) 2006, 717.
21.
21F. Breitling, A. Nesterov, V. Stadler, T. Felgenhauer and F. R. Bischoff, Mol. Biosyst. 5, 224 (2009).
http://dx.doi.org/10.1039/b819850k
22.
22T. Horlacher and P. H. Seeberger, Chem. Soc. Rev. 37, 1414 (2008).
http://dx.doi.org/10.1039/b708016f
23.
23T. Feizi, F. Fazio, W. Chai and C. H. Wong, Curr. Opin. Struct. Biol. 13, 637 (2003).
http://dx.doi.org/10.1016/j.sbi.2003.09.002
24.
24P. H. Liang, C. Y. Wu, W. A. Greenberg and C. H. Wong, Curr. Opin. Chem. Biol. 12, 86 (2008).
http://dx.doi.org/10.1016/j.cbpa.2008.01.031
25.
25J. L. Duffner, P. A. Clemons and A. N. Koehler, Curr. Opin. Chem. Biol. 11, 74 (2007).
http://dx.doi.org/10.1016/j.cbpa.2006.11.031
26.
26G. MacBeath, A. N. Koehler and S. L. Schreiber, J. Am. Chem. Soc. 121, 7967 (1999).
http://dx.doi.org/10.1021/ja991083q
27.
27G. MacBeath and S. L. Schreiber, Science 289, 1760 (2000).
28.
28B. Schweitzer, P. Predki and M. Snyder, Proteomics 3, 2190 (2003).
http://dx.doi.org/10.1002/pmic.200300610
29.
29H. Zhu et al., Science 293, 2101 (2001).
http://dx.doi.org/10.1126/science.1062191
30.
30D. B. Wheeler, A. E. Carpenter and D. M. Sabatini, Nat. Genet. 37, S25 (2005).
http://dx.doi.org/10.1038/ng1560
31.
31J. Ziauddin and D. M. Sabatini, Nature (London) 411, 107 (2001).
http://dx.doi.org/10.1038/35075114
32.
32T. G. Fernandes, M. M. Diogo, D. S. Clark, J. S. Dordick and J. M. Cabral, Trends Biotechnol. 27, 342 (2009).
http://dx.doi.org/10.1016/j.tibtech.2009.02.009
33.
33A. Hoos et al., Am. J. Pathol. 158, 1245 (2001).
http://dx.doi.org/10.1016/S0002-9440(10)64075-8
34.
34J. Wang, M. Uttamchandani, H. Sun and S. Q. Yao, QSAR Comb. Sci. 25, 1009 (2006).
http://dx.doi.org/10.1002/qsar.200640083
35.
35A. Wolf-Yadlin, M. Sevecka and G. MacBeath, Curr. Opin. Chem. Biol. 13, 398 (2009).
http://dx.doi.org/10.1016/j.cbpa.2009.06.027
36.
36O. Schilling and C. M. Overall, Curr. Opin. Chem. Biol. 11, 36 (2007).
http://dx.doi.org/10.1016/j.cbpa.2006.11.037
37.
37D. N. Gosalia, C. M. Salisbury, J. A. Ellman and S. L. Diamond, Mol. Cell Proteomics 4, 626 (2005).
http://dx.doi.org/10.1074/mcp.M500004-MCP200
38.
38D. N. Gosalia, C. M. Salisbury, D. J. Maly, J. A. Ellman and S. L. Diamond, Proteomics 5, 1292 (2005).
http://dx.doi.org/10.1002/pmic.200401011
39.
39X. Han, G. Yamanouchi, T. Mori, J. H. Kang, T. Niidome, Y. Katayama and J. Biomol, Screening 14, 256 (2009).
40.
40S. Shigaki et al., Anal. Sci. 23, 271 (2007).
http://dx.doi.org/10.2116/analsci.23.271
41.
41M. Sevecka and G. MacBeath, Nat. Methods 3, 825 (2006).
http://dx.doi.org/10.1038/nmeth931
42.
42R. B. Jones, A. Gordus, J. A. Krall and G. MacBeath, Nature (London) 439, 168 (2006).
http://dx.doi.org/10.1038/nature04177
43.
43M. A. Stiffler, V. P. Grantcharova, M. Sevecka and G. MacBeath, J. Am. Chem. Soc. 128, 5913 (2006).
http://dx.doi.org/10.1021/ja060943h
44.
44M. A. Stiffler, J. R. Chen, V. P. Grantcharova, Y. Lei, D. Fuchs, J. E. Allen, L. A. Zaslavskaia and G. MacBeath, Science 317, 364 (2007).
http://dx.doi.org/10.1126/science.1144592
45.
45T. S. Gujral and G. MacBeath, Sci. Signal. 2, 65 (2009).
http://dx.doi.org/10.1126/scisignal.293pe64
46.
46C. M. Overall and O. Kleifeld, Nat. Rev. Cancer 6, 227 (2006).
http://dx.doi.org/10.1038/nrc1821
47.
47X. Duburcq et al., Bioconjugate Chem. 15, 307 (2004).
http://dx.doi.org/10.1021/bc034226d
48.
48R. A. Copeland, M. R. Harpel and P. J. Tummino, Expert Opin. Ther. Targets 11, 967 (2007).
http://dx.doi.org/10.1517/14728222.11.7.967
49.
49M. Eisenstein, Nature (London) 444, 959 (2006).
http://dx.doi.org/10.1038/444959a
50.
50G. Manning, D. B. Whyte, R. Martinez, T. Hunter and S. Sudarsanam, Science 298, 1912 (2002).
http://dx.doi.org/10.1126/science.1075762
51.
51N. D. Rawlings, A. J. Barrett and A. Bateman, Nucleic Acids Res. 38, D227 (2010).
http://dx.doi.org/10.1093/nar/gkp971
52.
52S. Arena, S. Benvenuti and A. Bardelli, Cell. Mol. Life Sci. 62, 2092 (2005).
http://dx.doi.org/10.1007/s00018-005-5205-1
53.
53R. Frank, Tetrahedron 48, 9217 (1992).
http://dx.doi.org/10.1016/S0040-4020(01)85612-X
54.
54S. P. Fodor, J. L. Read, M. C. Pirrung, L. Stryer, A. T. Lu and D. Solas, Science 251, 767 (1991).
http://dx.doi.org/10.1126/science.1990438
55.
55X. Gao, J. P. Pellois, Y. Na, Y. Kim, E. Gulari and X. Zhou, Mol. Divers. 8, 177 (2004).
http://dx.doi.org/10.1023/B:MODI.0000036233.58271.25
56.
56F. Breitling, T. Felgenhauer, A. Nesterov, V. Lindenstruth, V. Stadler and F. R. Bischoff, ChemBioChem 10, 803 (2009).
http://dx.doi.org/10.1002/cbic.200800735
57.
57M. Beyer et al., Science 318, 1888 (2007).
http://dx.doi.org/10.1126/science.1149751
58.
58F. G. Kuruvilla, A. F. Shamji, S. M. Sternson, P. J. Hergenrother and S. L. Schreiber, Nature (London) 416, 653 (2002).
http://dx.doi.org/10.1038/416653a
59.
59A. N. Koehler, A. F. Shamji and S. L. Schreiber, J. Am. Chem. Soc. 125, 8420 (2003).
http://dx.doi.org/10.1021/ja0352698
60.
60X. Y. Xiao, R. Li, H. Zhuang, B. Ewing, K. Karunaratne, J. Lillig, R. Brown and K. C. Nicolaou, Biotechnol. Bioeng. 71, 44 (2000).
http://dx.doi.org/10.1002/(SICI)1097-0290(200024)71:1<44::AID-BIT7>3.0.CO;2-J
61.
61N. Kanoh, S. Kumashiro, S. Simizu, Y. Kondoh, S. Hatakeyama, H. Tashiro and H. Osada, Angew. Chem., Int. Ed. Engl. 42, 5584 (2003).
http://dx.doi.org/10.1002/anie.200352164
62.
62N. Kanoh et al., Chem. Asian J. 1, 789 (2006).
http://dx.doi.org/10.1002/asia.200600208
63.
63N. Kanoh, H. Takayama, K. Honda, T. Moriya, T. Teruya, S. Simizu, H. Osada and Y. Iwabuchi, Bioconjugate Chem. 21, 182 (2010).
http://dx.doi.org/10.1021/bc900316q
64.
64N. Ramachandran, E. Hainsworth, G. Demirkan and J. LaBaer, Methods Mol. Biol. 328, 1 (2006).
65.
65M. L. Lesaicherre, M. Uttamchandani, G. Y. Chen and S. Q. Yao, Bioorg. Med. Chem. Lett. 12, 2079 (2002).
http://dx.doi.org/10.1016/S0960-894X(02)00379-7
66.
66N. Winssinger, R. Damoiseaux, D. C. Tully, B. H. Geierstanger, K. Burdick and J. L. Harris, Chem. Biol. 11, 1351 (2004).
http://dx.doi.org/10.1016/j.chembiol.2004.07.015
67.
67N. Winssinger and J. L. Harris, Expert Rev. Proteomics 2, 937 (2005).
http://dx.doi.org/10.1586/14789450.2.6.937
68.
68H. D. Urbina, F. Debaene, B. Jost, C. Bole-Feysot, D. E. Mason, P. Kuzmic, J. L. Harris and N. Winssinger, ChemBioChem 7, 1790 (2006).
http://dx.doi.org/10.1002/cbic.200600242
69.
69S. Melkko, J. Scheuermann, C. E Dumelin and D. Neri, Nat. Biotechnol. 22, 568 (2004).
http://dx.doi.org/10.1038/nbt961
70.
70J. Scheuermann, C. E. Dumelin, S. Melkko, Y. Zhang, L. Mannocci, M. Jaggi, J. Sobek and D. Neri, Bioconjugate Chem. 19, 778 (2008).
http://dx.doi.org/10.1021/bc7004347
71.
71K. S. Lam and M. Renil, Curr. Opin. Chem. Biol. 6, 353 (2002).
http://dx.doi.org/10.1016/S1367-5931(02)00326-5
72.
72R. B. Merrifield, J. Am. Chem. Soc. 85, 2149 (1963).
http://dx.doi.org/10.1021/ja00897a025
73.
73S. M. Sternson, J. B. Louca, J. C. Wong and S. L. Schreiber, J. Am. Chem. Soc. 123, 1740 (2001).
http://dx.doi.org/10.1021/ja0036108
74.
74A. Lee and J. G. Breitenbucher, Curr. Opin. Drug Discovery Dev. 6, 494 (2003).
75.
75H. C. Kolb and K. B. Sharpless, Drug Discovery Today 8, 1128 (2003).
http://dx.doi.org/10.1016/S1359-6446(03)02933-7
76.
76C. W. Tornøe, C. Christensen and M. Meldal, J. Org. Chem. 67, 3057 (2002).
http://dx.doi.org/10.1021/jo011148j
77.
77V. V. Rostovtsev, L. G. Green, V. V. Fokin and K. B. Sharpless, Angew. Chem., Int. Ed. Engl. 41, 2596 (2002).
http://dx.doi.org/10.1002/1521-3773(20020715)41:14<2596::AID-ANIE2596>3.0.CO;2-4
78.
78M. Köhn, R. Wacker, C. Peters, H. Schroder, L. Soulere, R. Breinbauer, C. M. Niemeyer and H. Waldmann, Angew. Chem., Int. Ed. Engl. 42, 5830 (2003).
http://dx.doi.org/10.1002/anie.200352877
79.
79J. Kalia, N. L. Abbott and R. T. Raines, Bioconjugate Chem. 18, 1064 (2007).
http://dx.doi.org/10.1021/bc0603034
80.
80R. Srinivasan, J. Li, S. L. Ng, K. A. Kalesh and S. Q. Yao, Nat. Protoc. 2, 2655 (2007).
http://dx.doi.org/10.1038/nprot.2007.323
81.
81D. M. Marsden, R. L. Nicholson, M. Ladlow, and D. R. Spring, Chem. Commun. (Cambridge) 2009, 7107.
82.
82N. Gupta, Nat. Chem. 2, 138 (2010).
http://dx.doi.org/10.1038/nchem.478
83.
83C. M. Salisbury, D. J. Maly and J. A. Ellman, J. Am. Chem. Soc. 124, 14868 (2002).
http://dx.doi.org/10.1021/ja027477q
84.
84Q. Zhu, M. Uttamchandani, D. Li, M. L. Lesaicherre and S. Q. Yao, Org. Lett. 5, 1257 (2003).
http://dx.doi.org/10.1021/ol034233h
85.
85S. Park and I. Shin, Org. Lett. 9, 1675 (2007).
http://dx.doi.org/10.1021/ol070250l
86.
86Y. H. Oh, M. Y. Hong, Z. Jin, T. Lee, M. K. Han, S. Park and H. S. Kim, Biosens. Bioelectron. 22, 1260 (2007).
http://dx.doi.org/10.1016/j.bios.2006.05.023
87.
87D. N. Gosalia, W. S. Denney, C. M. Salisbury, J. A. Ellman and S. L. Diamond, Biotechnol. Bioeng. 94, 1099 (2006).
http://dx.doi.org/10.1002/bit.20927
88.
88P. Babiak and J. L. Reymond, Anal. Chem. 77, 373 (2005).
http://dx.doi.org/10.1021/ac048611n
89.
89P. Angenendt, H. Lehrach, J. Kreutzberger and J. Glokler, Proteomics 5, 420 (2005).
http://dx.doi.org/10.1002/pmic.200400955
90.
90M. Uttamchandani, X. Huang, G. Y. Chen and S. Q. Yao, Bioorg. Med. Chem. Lett. 15, 2135 (2005).
http://dx.doi.org/10.1016/j.bmcl.2005.02.019
91.
91L. Mugherli, O. N. Burchak, L. A. Balakireva, A. Thomas, F. Chatelain and M. Y. Balakirev, Angew. Chem., Int. Ed. Engl. 48, 7639 (2009).
http://dx.doi.org/10.1002/anie.200901139
92.
92M. L. Lesaicherre, M. Uttamchandani, G. Y. Chen and S. Q. Yao, Bioorg. Med. Chem. Lett. 12, 2085 (2002).
http://dx.doi.org/10.1016/S0960-894X(02)00378-5
93.
93J. R. Falsey, M. Renil, S. Park, S. Li and K. S. Lam, Bioconjugate Chem. 12, 346 (2001).
http://dx.doi.org/10.1021/bc000141q
94.
94B. T. Houseman, J. H. Huh, S. J. Kron and M. Mrksich, Nat. Biotechnol. 20, 270 (2002).
http://dx.doi.org/10.1038/nbt0302-270
95.
95M. Uttamchandani, E. W. Chan, G. Y. Chen and S. Q. Yao, Bioorg. Med. Chem. Lett. 13, 2997 (2003).
http://dx.doi.org/10.1016/S0960-894X(03)00633-4
96.
96K. Martin, T. H. Steinberg, L. A. Cooley, K. R. Gee, J. M. Beechem and W. F. Patton, Proteomics 3, 1244 (2003).
http://dx.doi.org/10.1002/pmic.200300445
97.
97M. Schutkowski, U. Reimer, S. Panse, L. Y. Dong, J. M. Lizcano, D. R. Alessi and J. Schneider-Mergener, Angew. Chem., Int. Ed. 43, 2671 (2004).
http://dx.doi.org/10.1002/anie.200453900
98.
98M. Schutkowski, U. Reineke and U. Reimer, ChemBioChem 6, 513 (2005).
http://dx.doi.org/10.1002/cbic.200400314
99.
99S. Panse, L. Dong, A. Burian, R. Carus, M. Schutkowski, U. Reimer and J. Schneider-Mergener, Mol. Divers. 8, 291 (2004).
http://dx.doi.org/10.1023/B:MODI.0000036240.39384.eb
100.
100L. Rychlewski, M. Kschischo, L. Dong, M. Schutkowski and U. Reimer, J. Mol. Biol. 336, 307 (2004).
http://dx.doi.org/10.1016/j.jmb.2003.12.052
101.
101H. Wang and D. L. Brautigan, Mol. Cell Proteomics 5, 2124 (2006).
http://dx.doi.org/10.1074/mcp.M600188-MCP200
102.
102O. Stoevesandt, M. Elbs, K. Kohler, A. C. Lellouch, R. Fischer, T. Andre and R. Brock, Proteomics 5, 2010 (2005).
http://dx.doi.org/10.1002/pmic.200401095
103.
103H. Sun, C. H. Lu, M. Uttamchandani, Y. Xia, Y. C. Liou and S. Q. Yao, Angew. Chem., Int. Ed. Engl. 47, 1698 (2008).
http://dx.doi.org/10.1002/anie.200703473
104.
104M. Köhn et al., Angew. Chem., Int. Ed. Engl. 46, 7700 (2007).
http://dx.doi.org/10.1002/anie.200701601
105.
105H. Sun, L. P. Tan, L. Gao, and S. Q. Yao, Chem. Commun. (Cambridge) 2009, 677.
106.
106K. Usui, K. Y. Tomizaki, T. Ohyama, K. Nokihara and H. Mihara, Mol. Biosyst. 2, 113 (2006).
http://dx.doi.org/10.1039/b514263f
107.
107M. Takahashi, K. Nokihara and H. Mihara, Chem. Biol. 10, 53 (2003).
http://dx.doi.org/10.1016/S1074-5521(02)00308-3
108.
108M. M. Reddy and T. Kodadek, Proc. Natl. Acad. Sci. U.S.A. 102, 12672 (2005).
http://dx.doi.org/10.1073/pnas.0501208102
109.
109D. N. Gosalia and S. L. Diamond, Proc. Natl. Acad. Sci. U.S.A. 100, 8721 (2003).
http://dx.doi.org/10.1073/pnas.1530261100
110.
110M. Uttamchandani, K. Liu, R. C. Panicker, and S. Q. Yao, Chem. Commun. (Cambridge) 2007, 1518.
111.
111S. A. Sieber, T. S. Mondala, S. R. Head and B. F. Cravatt, J. Am. Chem. Soc. 126, 15640 (2004).
http://dx.doi.org/10.1021/ja044286+
112.
112G. Y. Chen, M. Uttamchandani, Q. Zhu, G. Wang and S. Q. Yao, ChemBioChem 4, 336 (2003).
http://dx.doi.org/10.1002/cbic.200390054
113.
113H. Schmidinger, H. Susani-Etzerodt, R. Birner-Gruenberger and A. Hermetter, ChemBioChem 7, 527 (2006).
http://dx.doi.org/10.1002/cbic.200500276
114.
114J. Eppinger, D. P. Funeriu, M. Miyake, L. Denizot and J. Miyake, Angew. Chem., Int. Ed. Engl. 43, 3806 (2004).
http://dx.doi.org/10.1002/anie.200353623
115.
115D. P. Funeriu, J. Eppinger, L. Denizot, M. Miyake and J. Miyake, Nat. Biotechnol. 23, 622 (2005).
http://dx.doi.org/10.1038/nbt1090
116.
116A. J. Vegas, J. E. Bradner, W. Tang, O. M. McPherson, E. F. Greenberg, A. N. Koehler and S. L. Schreiber, Angew. Chem., Int. Ed. Engl. 46, 7960 (2007).
http://dx.doi.org/10.1002/anie.200703198
117.
117M. Uttamchandani, W. L. Lee, J. Wang and S. Q. Yao, J. Am. Chem. Soc. 129, 13110 (2007).
http://dx.doi.org/10.1021/ja073914v
118.
118C. H. Lu, H. Sun, F. B. Abu Bakar, M. Uttamchandani, W. Zhou, Y. C. Liou and S. Q. Yao, Angew. Chem., Int. Ed. Engl. 47, 7438 (2008).
http://dx.doi.org/10.1002/anie.200801395
119.
119M. Y. Lee, C. B. Park, J. S. Dordick and D. S. Clark, Proc. Natl. Acad. Sci. U.S.A. 102, 983 (2005).
http://dx.doi.org/10.1073/pnas.0406755102
120.
120S. M. Sukumaran, B. Potsaid, M. Y. Lee, D. S. Clark and J. S. Dordick, J. Biomol. Screening 14, 668 (2009).
http://dx.doi.org/10.1177/1087057109336592
http://aip.metastore.ingenta.com/content/avs/journal/bip/5/3/10.1116/1.3462969
Loading
/content/avs/journal/bip/5/3/10.1116/1.3462969
Loading

Data & Media loading...

Loading

Full text loading...

true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=avspublications.org/5/3/10.1116/1.3462969&pageURL=http://scitation.aip.org/content/avs/journal/bip/5/3/10.1116/1.3462969'
Right1,Right2,Right3,