Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/avs/journal/bip/6/1/10.1116/1.3536839
1.
1R. P. Feynman, Eng. Sci. 23, 22 (1960).
2.
2R. F. W. Pease, J. Vac. Sci. Technol. B 10, 278 (1992).
http://dx.doi.org/10.1116/1.586346
3.
3A Report by The Royal Society and The Royal Academy of Engineering (2004).
4.
4G. M. Whitesides, Small 1, 172 (2005).
http://dx.doi.org/10.1002/smll.200400130
5.
5D. Brambley, D. Martin and P. D. Prewett, Adv. Mater. Opt. Electron. 4, 55 (1994).
http://dx.doi.org/10.1002/amo.860040203
6.
6W. M. Moreau, Semiconductor Lithography: Principles and Materials (Plenum, New York, 1988).
7.
7M. Feldman and J. Sun, J. Vac. Sci. Technol. B 10, 3173 (1992).
http://dx.doi.org/10.1116/1.585906
8.
8J. P. Silverman, J. Vac. Sci. Technol. B 15, 2117 (1997).
http://dx.doi.org/10.1116/1.589231
9.
9R. Menon, A. Patel, D. Gil and H. I. Smith, Mater. Today 8, 26 (2005).
http://dx.doi.org/10.1016/S1369-7021(05)00699-1
10.
10S. Matsui, Y. Kojima, Y. Ochiai and T. Honda, J. Vac. Sci. Technol. B 9, 2622 (1991).
http://dx.doi.org/10.1116/1.585660
11.
11J. Melngailis, J. Vac. Sci. Technol. B 5, 469 (1987).
http://dx.doi.org/10.1116/1.583937
12.
12G. L. T. Chiu and J. M. Shaw, IBM J. Res. Dev. 41, 3 (1997).
http://dx.doi.org/10.1147/rd.411.0003
13.
13S. J. Holmes, P. H. Mitchell and M. C. Hakey, IBM J. Res. Dev. 41, 7 (1997).
http://dx.doi.org/10.1147/rd.411.0007
14.
14K. J. Edler, Philos. Trans. R. Soc. London, Ser. A 362, 2635 (2004).
http://dx.doi.org/10.1098/rsta.2004.1456
15.
15D. Philip and J. F. Stoddart, Angew. Chem., Int. Ed. Engl. 35, 1155 (1996).
16.
16G. M. Whitesides, Nat. Biotechnol. 21, 1161 (2003).
http://dx.doi.org/10.1038/nbt872
17.
17G. M. Whitesides and B. Grzybowski, Science 295, 2418 (2002).
http://dx.doi.org/10.1126/science.1070821
18.
18B. D. Gates, Q. Xu, J. C. Love, D. B. Wolfe and G. M. Whitesides, Annu. Rev. Mater. Res. 34, 339 (2004).
http://dx.doi.org/10.1146/annurev.matsci.34.052803.091100
19.
19C. J. Love, L. A. Estroff, J. K. Kriebel, R. G. Nuzzo and G. M. Whitesides, Chem. Rev. (Washington, D.C.) 105, 1103 (2005).
20.
20A. Ulman, Chem. Rev. (Washington, D.C.) 96, 1533 (1996).
21.
21C. T. Black, R. Ruiz, G. Breyta, J. Y. Cheng, M. E. Colburn, K. W. Guarini, H.-C. Kim and Y. Zhang, IBM J. Res. Dev. 51, 605 (2007).
http://dx.doi.org/10.1147/rd.515.0605
22.
22I. W. Hamley, Nanotechnology 14, R39 (2003).
http://dx.doi.org/10.1088/0957-4484/14/10/201
23.
23I. W. Hamley, Angew. Chem., Int. Ed. 42, 1692 (2003).
http://dx.doi.org/10.1002/anie.200200546
24.
24C. Park, J. Yoon and E. L. Thomas, Polymer 44, 6725 (2003).
http://dx.doi.org/10.1016/j.polymer.2003.08.011
25.
25Y. Xia, B. Gates, Y. Yin and Y. Lu, Adv. Mater. 12, 693 (2000).
http://dx.doi.org/10.1002/(SICI)1521-4095(200005)12:10<693::AID-ADMA693>3.0.CO;2-J
26.
26S. M. Yang, S. G. Jang, D. G. Choi, S. Kim and H. K. Yu, Small 2, 458 (2006).
http://dx.doi.org/10.1002/smll.200500390
27.
27Y. Xia, Y. Yin, Y. Lu and J. McLellan, Adv. Funct. Mater. 13, 907 (2003).
http://dx.doi.org/10.1002/adfm.200300002
28.
28Y. Yin, Y. Lu, B. Gates and Y. Xia, J. Am. Chem. Soc. 123, 8718 (2001).
http://dx.doi.org/10.1021/ja011048v
29.
29Y. Yin and Y. Xia, Adv. Mater. 13, 267 (2001).
http://dx.doi.org/10.1002/1521-4095(200102)13:4<267::AID-ADMA267>3.0.CO;2-9
30.
30J. S. Ahn, P. T. Hammond, M. F. Rubner and I. Lee, Colloids Surf., A 259, 45 (2005).
http://dx.doi.org/10.1016/j.colsurfa.2005.02.008
31.
31P. T. Hammond, Surface-Directed Colloid Patterning: Selective Deposition via Electrostatic and Secondary Interactions; in Colloids and Colloid Assemblies: Synthesis, Modification, Organization and Utilization of Colloid Particles, edited by F. Caruso (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2004).
32.
32G. M. Whitesides, E. Ostuni, S. Takayama, X. Jiang and D. E. Ingber, Annu. Rev. Biomed. Eng. 3, 335 (2001).
http://dx.doi.org/10.1146/annurev.bioeng.3.1.335
33.
33Y. Xia, J. A. Rogers, K. E. Paul and G. M. Whitesides, Chem. Rev. (Washington, D.C.) 99, 1823 (1999).
34.
34Y. Xia and G. M. Whitesides, Angew. Chem. 110, 568 (1998).
http://dx.doi.org/10.1002/(SICI)1521-3757(19980302)110:5<568::AID-ANGE568>3.0.CO;2-X
35.
35R. D. Piner, J. Zhu, F. Xu, S. Hong and C. A. Mirkin, Science 283, 661 (1999).
http://dx.doi.org/10.1126/science.283.5402.661
36.
36K. Salaita, Y. Wang and C. A. Mirkin, Nat. Nanotechnol. 2, 145 (2007).
http://dx.doi.org/10.1038/nnano.2007.39
37.
37K. Wadu-Mesthrige, S. Xu, N. A. Amro and G. Liu, Langmuir 15, 8580 (1999).
http://dx.doi.org/10.1021/la991196n
38.
38S. Xu, S. Miller, P. E. Laibinis and G. Liu, Langmuir 15, 7244 (1999).
http://dx.doi.org/10.1021/la9906727
39.
39M. K. Herndon, R. T. Collins, R. E. Hollingsworth, P. R. Larson and M. B. Johnson, Appl. Phys. Lett. 74, 141 (1999).
http://dx.doi.org/10.1063/1.122976
40.
40L. J. Guo, Adv. Mater. 19, 495 (2007).
http://dx.doi.org/10.1002/adma.200600882
41.
41M. Arnold, E. A. Cavalcanti-Adam, R. Glass, J. Blümmel, W. Eck, M. Kantlehner, H. Kessler and J. P. Spatz, ChemPhysChem 5, 383 (2004).
http://dx.doi.org/10.1002/cphc.200301014
42.
42R. Glass, M. Arnold, J. Blümmel, A. Küller, M. Möller and J. P. Spatz, Adv. Funct. Mater. 13, 569 (2003).
http://dx.doi.org/10.1002/adfm.200304331
43.
43T. Lohmüller, E. Bock and J. P. Spatz, Adv. Mater. 20, 2297 (2008).
http://dx.doi.org/10.1002/adma.200702635
44.
44P. Liu and J. Ding, Langmuir 26, 492 (2010).
http://dx.doi.org/10.1021/la9021504
45.
45T. Härtling, A. Seidenstücker, P. Olk, A. Plettl, P. Ziemann and L. M. Eng, Nanotechnology 21, 145309 (2010).
http://dx.doi.org/10.1088/0957-4484/21/14/145309
46.
46R. Glass, M. Arnold, E.-A. Cavalcanti-Adam, J. Blümmel, C. Haferkemper, C. Dodd and J. P. Spatz, New J. Phys. 6, 101 (2004).
http://dx.doi.org/10.1088/1367-2630/6/1/101
47.
47B. Gorzolnik, P. Mela and M. Möller, Nanotechnology 17, 5027 (2006).
http://dx.doi.org/10.1088/0957-4484/17/19/042
48.
48P. Mela, B. Gorzolnik, M. Bueckins, A. Mourran, J. Mayer and M. Möller, Small 3, 1368 (2007).
http://dx.doi.org/10.1002/smll.200600338
49.
49J. Chen, P. Mela, M. Möller and M. Lensen, ACS Nano 3, 1451 (2009).
http://dx.doi.org/10.1021/nn9002924
50.
50D. Aydin, M. Schwieder, I. Louban, S. Knoppe, J. Ulmer, T. L. Haas, H. Walczak and J. P. Spatz, Small 5, 1014 (2009).
http://dx.doi.org/10.1002/smll.200801219
51.
51D. Aydin et al., Langmuir 26, 14572 (2010).
http://dx.doi.org/10.1021/la103065x
52.
52S. V. Graeter, J. Huang, N. Perschmann, M. López-García, H. Kessler, J. Ding and J. P. Spatz, Nano Lett. 7, 1413 (2007).
http://dx.doi.org/10.1021/nl070098g
53.
53T. Wolfram, F. Belz, T. Schoen and J. P. Spatz, BioInterphases 2, 44 (2007).
http://dx.doi.org/10.1116/1.2713991
54.
54M. Arnold et al., Nano Lett. 8, 2063 (2008).
http://dx.doi.org/10.1021/nl801483w
55.
55M. Arnold, M. Schwieder, J. Blümmel, E. A. Cavalcanti-Adam, M. López-Garcia, H. Kessler, B. Geiger and J. P. Spatz, Soft Matter 5, 72 (2009).
http://dx.doi.org/10.1039/b815634d
56.
56E. A. Cavalcanti-Adam, A. Micoulet, J. Blümmel, J. Auernheimer, H. Kessler and J. P. Spatz, Eur. J. Cell Biol. 85, 219 (2006).
http://dx.doi.org/10.1016/j.ejcb.2005.09.011
57.
57E. A. Cavalcanti-Adam, T. Volberg, A. Micoulet, H. Kessler, B. Geiger and J. P. Spatz, Biophys. J. 92, 2964 (2007).
http://dx.doi.org/10.1529/biophysj.106.089730
58.
58C. Selhuber-Unkel, T. Erdmann, M. Lopez-Garcia, H. Kessler, U. S. Schwarz and J. P. Spatz, Biophys. J. 98, 543 (2010).
http://dx.doi.org/10.1016/j.bpj.2009.11.001
59.
59C. Selhuber-Unkel, M. Lopez-Garcia, H. Kessler and J. P. Spatz, Biophys. J. 95, 5424 (2008).
http://dx.doi.org/10.1529/biophysj.108.139584
60.
60B. Geiger, J. P. Spatz and A. D. Bershadsky, Nat. Rev. Mol. Cell Biol. 10, 21 (2009).
http://dx.doi.org/10.1038/nrm2593
61.
61E. A. Cavalcanti-Adam, D. Aydin, V. C. Hirschfeld-Warneken and J. P. Spatz, HFSP J. 2, 276 (2008).
http://dx.doi.org/10.2976/1.2976662
62.
62V. Hirschfeld-Warneken, M. Arnold, A. Cavalcanti-Adam, M. Lopez-Garcìa, H. Kessler and J. Spatz, Eur. J. Cell Biol. 87, 743 (2008).
http://dx.doi.org/10.1016/j.ejcb.2008.03.011
63.
63S. Jaehrling, K. Thelen, T. Wolfram and G. Pollerberg, Nano Lett. 9, 4115 (2009).
http://dx.doi.org/10.1021/nl9023325
64.
64K. Thelen, T. Wolfram, B. Maier, S. Jährling, A. Tinazli, J. Piehler, J. P. Spatz and G. E. Pollerberg, Soft Matter 3, 1486 (2007).
http://dx.doi.org/10.1039/b707250c
65.
65T. Lohmüller, M. Helgert, M. Sundermann, R. Brunner and J. P. Spatz, Nano Lett. 8, 1429 (2008).
http://dx.doi.org/10.1021/nl080330y
66.
66M. R. Goncalves and O. Marti, New J. Phys. 5, 160 (2003).
http://dx.doi.org/10.1088/1367-2630/5/1/160
67.
67B. Mbenkum, E. Barrena, X. Zhang, M. Kelsch and H. Dosch, Nano Lett. 6, 2852 (2006).
http://dx.doi.org/10.1021/nl062057a
68.
68E. Barrena, X. N. Zhang, B. N. Mbenkum, T. Lohmüller, T. N. Krauss, M. Kelsch, P. A. Aken, J. P. Spatz and H. Dosch, ChemPhysChem 9, 1114 (2008).
http://dx.doi.org/10.1002/cphc.200700834
69.
69T. N. Krauss, E. Barrena, T. Lohmüller, M. Kelsch, A. Breitling, P. A. Aken, J. P. Spatz and H. Dosch, Chem. Mater. 21, 5010 (2009).
http://dx.doi.org/10.1021/cm901103f
70.
70M. Park, C. Harrison, P. M. Chaikin, R. A. Register and D. H. Adamson, Science 276, 1401 (1997).
http://dx.doi.org/10.1126/science.276.5317.1401
71.
71R. Glass, M. Möller and J. P. Spatz, Nanotechnology 14, 1153 (2003).
http://dx.doi.org/10.1088/0957-4484/14/10/314
72.
72J. P. Spatz, S. Mössmer, C. Hartmann and M. Möller, Langmuir 16, 407 (2000).
http://dx.doi.org/10.1021/la990070n
73.
73L. Leibler, Macromolecules 13, 1602 (1980).
http://dx.doi.org/10.1021/ma60078a047
74.
74Z. Gao and A. Eisenberg, Macromolecules 26, 7353 (1993).
http://dx.doi.org/10.1021/ma00078a035
75.
75J. Israelachvili, Intramolecular and Surface Forces (Academic Press, London, 1992) 2nd ed..
76.
76J. Israelachvili, Langmuir 10, 3774 (1994).
http://dx.doi.org/10.1021/la00022a062
77.
77D. Izzo and C. M. Marques, Macromolecules 26, 7189 (1993).
http://dx.doi.org/10.1021/ma00078a012
78.
78J. P. Spatz, A. Röscher, S. Sheiko, G. Krausch and M. Möller, Adv. Mater. 7, 731 (1995).
http://dx.doi.org/10.1002/adma.19950070811
79.
79J. P. Spatz, S. Sheiko and M. Möller, Macromolecules 29, 3220 (1996).
http://dx.doi.org/10.1021/ma951712q
80.
80J. P. Spatz, S. Mössmer and M. Möller, Chem.-Eur. J. 2, 1552 (1996).
http://dx.doi.org/10.1002/chem.19960021213
81.
81S. Mössmer, J. P. Spatz, M. Möller, T. Aberle, J. Schmidt and W. Burchard, Macromolecules 33, 4791 (2000).
http://dx.doi.org/10.1021/ma992006i
82.
82G. Kästle et al., Adv. Funct. Mater. 13, 853 (2003).
http://dx.doi.org/10.1002/adfm.200304332
83.
83A. Ethirajan et al., Adv. Mater. 19, 406 (2007).
http://dx.doi.org/10.1002/adma.200601759
84.
84J. P. Wilcoxon and B. L. Abrams, Chem. Soc. Rev. 35, 1162 (2006).
http://dx.doi.org/10.1039/b517312b
85.
85A. N. Shipway, E. Katz and I. Willner, ChemPhysChem 1, 18 (2000).
http://dx.doi.org/10.1002/1439-7641(20000804)1:1<18::AID-CPHC18>3.0.CO;2-L
86.
86U. V. M. Kreibig, Optical Properties of Metal Clusters (Springer, Heidelberg, 1995).
87.
87C. Langhammer, Z. Yuan, I. Zoric and B. Kasemo, Nano Lett. 6, 833 (2006).
http://dx.doi.org/10.1021/nl060219x
88.
88S. Link and M. A. El-Sayed, Annu. Rev. Phys. Chem. 54, 331 (2003).
http://dx.doi.org/10.1146/annurev.physchem.54.011002.103759
89.
89P. Mulvaney, Langmuir 12, 788 (1996).
http://dx.doi.org/10.1021/la9502711
90.
90M. Schnippering, M. Carrara, A. Foelske, R. Kötz and D. J. Fermín, Phys. Chem. Chem. Phys. 9, 725 (2007).
http://dx.doi.org/10.1039/b611496b
91.
91J. Sharma, J. P. Vivek and K. P. Vijayamohanan, J. Nanosci. Nanotechnol. 6, 3464 (2006).
http://dx.doi.org/10.1166/jnn.2006.035
92.
92J. Lu, S. S. Yi, T. Kopley, C. Qian, J. Liu and G. Erdogan, J. Phys. Chem. B 110, 6655 (2006).
http://dx.doi.org/10.1021/jp057085g
93.
93D. Takagi, Y. Homma, H. Hibino, S. Suzuki and Y. Kobayashi, Nano Lett. 6, 2642 (2006).
http://dx.doi.org/10.1021/nl061797g
94.
94P. Hanarp, M. Kaell and D. S. Sutherland, J. Phys. Chem. B 107, 5768 (2003).
http://dx.doi.org/10.1021/jp027562k
95.
95K. L. Kelly, E. Coronado, L. L. Zhao and G. C. Schatz, J. Phys. Chem. B 107, 668 (2003).
http://dx.doi.org/10.1021/jp026731y
96.
96L. M. Liz-Marzán, Langmuir 22, 32 (2006).
http://dx.doi.org/10.1021/la0513353
97.
97W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht and F. R. Aussenegg, Opt. Commun. 220, 137 (2003).
http://dx.doi.org/10.1016/S0030-4018(03)01357-9
98.
98N. Walter, C. Selhuber, H. Kessler and J. P. Spatz, Nano Lett. 6, 398 (2006).
http://dx.doi.org/10.1021/nl052168u
99.
99S. Krishnamoorthy, P. Raphaël, J. Brugger, H. Heinzelmann and C. Hinderling, Adv. Funct. Mater. 16, 1469 (2006).
http://dx.doi.org/10.1002/adfm.200500524
100.
100J. Bansmann, S. Kielbassa, H. Hoster, F. Weigl, H. G. Boyen, U. Wiedwald, P. Ziemann and R. J. Behm, Langmuir 23, 10150 (2007).
http://dx.doi.org/10.1021/la7012304
101.
101M. Möller, C. S. Hartmann, J. Sihler, S. Fricker, V. Z. H. Chan and J. P. Spatz, Polym. Mater. Sci. Eng. 90, 255 (2004).
102.
102S. Förster and T. Plantenberg, Angew. Chem., Int. Ed. 41, 688 (2002).
http://dx.doi.org/10.1002/1521-3773(20020301)41:5<688::AID-ANIE688>3.0.CO;2-3
103.
103M. Arnold, Dissertation, University of Heidelberg (2005).
104.
104A. A. Darhuber, S. M. Troian, S. M. Miller and S. Wagner, J. Appl. Phys. 87, 7768 (2000).
http://dx.doi.org/10.1063/1.373452
105.
105K. R. Brown and M. J. Natan, Langmuir 14, 726 (1998).
http://dx.doi.org/10.1021/la970982u
106.
106J. Turkevich, P. C. Stevenson and J. Hillier, Discuss. Faraday Soc. 11, 55 (1951).
http://dx.doi.org/10.1039/df9511100055
107.
107G. Stremsdoerfer, J. R. Martin and P. Clechet, Proc.-Electrochem. Soc. 92-93, 305 (1992).
108.
108J. P. Spatz, Angew. Chem., Int. Ed. 41, 3359 (2002).
http://dx.doi.org/10.1002/1521-3773(20020916)41:18<3359::AID-ANIE3359>3.0.CO;2-Y
109.
109S. H. Yun, B. H. Sohn, J. C. Jung, W. C. Zin, M. Ree and J. W. Park, Nanotechnology 17, 450 (2006).
http://dx.doi.org/10.1088/0957-4484/17/2/018
110.
110J. P. Spatz, V. Z. H. Chan, S. Mößmer, F.-M. Kamm, A. Plettl, P. Ziemann and M. Möller, Adv. Mater. 14, 1827 (2002).
http://dx.doi.org/10.1002/adma.200290011
111.
111M. M. Stevens and J. H. George, Science 310, 1135 (2005).
http://dx.doi.org/10.1126/science.1106587
112.
112C. A. Mirkin and C. M. Niemeyer, Nanobiotechnology II: More Concepts and Applications (Wiley-VCH, New York, 2007).
113.
113C. M. Niemeyer and C. A. Mirkin, Nanobiotechnology: Concepts, Applications and Perspectives (Wiley-VCH, New York, 2004).
114.
114I. Willner, R. Baron and B. Willner, Biosens. Bioelectron. 22, 1841 (2007).
http://dx.doi.org/10.1016/j.bios.2006.09.018
115.
115K.-B. Lee, S.-J. Park, C. A. Mirkin, J. C. Smith and M. Mrksich, Science 295, 1702 (2002).
http://dx.doi.org/10.1126/science.1067172
116.
116M. Heuvel and C. Dekker, Science 317, 333 (2007).
http://dx.doi.org/10.1126/science.1139570
117.
117S. Howorka, S. Cheley and H. Bayley, Nat. Biotechnol. 19, 636 (2001).
http://dx.doi.org/10.1038/90236
118.
118C. R. Martin and P. Kohli, Nat. Rev. Drug Discovery 2, 29 (2003).
http://dx.doi.org/10.1038/nrd988
119.
119L. M. Adleman, Science 266, 1021 (1994).
http://dx.doi.org/10.1126/science.7973651
120.
120M. A. Firestone, M. L. Shank, S. G. Sligar and P. W. Bohn, J. Am. Chem. Soc. 118, 9033 (1996).
http://dx.doi.org/10.1021/ja961046o
121.
121J. Groll, K. Albrecht, P. Gasteier, S. Riethmüller, U. Ziener and M. Möller, ChemBioChem 6, 1782 (2005).
http://dx.doi.org/10.1002/cbic.200500041
122.
122J. Blümmel, N. Perschmann, D. Aydin, J. Drinjakovic, T. Surrey, M. Lopez-Garcia, H. Kessler and J. P. Spatz, Biomaterials 28, 4739 (2007).
http://dx.doi.org/10.1016/j.biomaterials.2007.07.038
123.
123G. Kenausis, J. Voros, D. Elbert, N. Huang, R. Hofer, L. Ruiz-Taylor, M. Textor, J. A. Hubbell and N. D. Spencer, J. Phys. Chem. B 104, 3298 (2000).
http://dx.doi.org/10.1021/jp993359m
124.
124R. O. Hynes, Cell 48, 549 (1987).
http://dx.doi.org/10.1016/0092-8674(87)90233-9
125.
125E. Ruoslahti, Annu. Rev. Cell Dev. Biol. 12, 697 (1996).
http://dx.doi.org/10.1146/annurev.cellbio.12.1.697
126.
126L. Y. Koo, D. J. Irvine, A. M. Mayes, D. A. Lauffenburger and L. G. Griffith, J. Cell. Sci. 115, 1423 (2002).
127.
127G. Maheshwari, G. Brown, D. A. Lauffenburger, A. Wells and L. G. Griffith, J. Cell. Sci. 113, 1677 (2000).
128.
128S. P. Massia and J. A. Hubbell, J. Cell Biol. 114, 1089 (1991).
http://dx.doi.org/10.1083/jcb.114.5.1089
129.
129J. P. Spatz and B. Geiger, Methods Cell Biol. 83, 89 (2007).
http://dx.doi.org/10.1016/S0091-679X(07)83005-6
130.
130O. Akbulut, J. M. Jung, R. D. Bennett, Y. Hu, H.-T. Jung, R. E. Cohen, A. M. Mayes and F. Stellacci, Nano Lett. 7, 3493 (2007).
http://dx.doi.org/10.1021/nl0720758
131.
131L. Cao, J. A. Massey, M. A. Winnik, I. Manners, S. Riethmüller, F. Banhart, J. P. Spatz and M. Möller, Adv. Funct. Mater. 13, 271 (2003).
http://dx.doi.org/10.1002/adfm.200304261
132.
132J. P. Spatz, P. Eibeck, S. Mössmer, M. Möller, T. Herzog and P. Ziemann, Adv. Mater. 10, 849 (1998).
http://dx.doi.org/10.1002/(SICI)1521-4095(199808)10:11<849::AID-ADMA849>3.0.CO;2-5
133.
133M. Haupt, S. Miller, R. Glass, M. Arnold, R. Sauer, K. Thonke, M. Möller and J. P. Spatz, Adv. Mater. 15, 829 (2003).
http://dx.doi.org/10.1002/adma.200304688
134.
134K. Shin, K. A. Leach, J. T. Goldbach, D. H. Kim, J. Y. Jho, M. Tuominen, C. J. Hawker and T. P. Russell, Nano Lett. 2, 933 (2002).
http://dx.doi.org/10.1021/nl0256560
135.
135D. P. DiVincenzo, Science 270, 255 (1995).
http://dx.doi.org/10.1126/science.270.5234.255
136.
136M. Ibn-Elhaj and M. Schadt, Nature (London) 410, 796 (2001).
http://dx.doi.org/10.1038/35071039
137.
137S. Walheim, E. Schaeffer, J. Mlynek and U. Steiner, Science 283, 520 (1999).
http://dx.doi.org/10.1126/science.283.5401.520
138.
138S. Ahl, P. J. Cameron, J. Liu, W. Knoll, J. Erlebacher and F. Yu, Plasmonics 3, 13 (2008).
http://dx.doi.org/10.1007/s11468-007-9048-5
139.
139T. Lohmüller et al., J. Micromech. Microeng. 18, 115011 (2008).
http://dx.doi.org/10.1088/0960-1317/18/11/115011
140.
140G. Sauer, G. Brehm, S. Schneider, K. Nielsch, R. B. Wehrspohn, J. Choi, H. Hofmeister and U. Gösele, J. Appl. Phys. 91, 3243 (2002).
http://dx.doi.org/10.1063/1.1435830
141.
141M. Steinhart, J. Wendorff, A. Greiner, R. B. Wehrspohn, K. Nielsch, J. Schilling, J. Choi and U. Gösele, Science 296, 1997 (2002).
http://dx.doi.org/10.1126/science.1071210
142.
142A. Birner, R. Wehrspohn, U. Gösele and K. Busch, Adv. Mater. 13, 377 (2001).
http://dx.doi.org/10.1002/1521-4095(200103)13:6<377::AID-ADMA377>3.0.CO;2-X
143.
143M. Haupt, S. Miller, A. Ladenburger, R. Sauer, K. Thonke, J. P. Spatz, S. Riethmüller, M. Möller and F. Banhart, J. Appl. Phys. 91, 6057 (2002).
http://dx.doi.org/10.1063/1.1465117
144.
144T. Lohmüller, R. Brunner and J. P. Spatz, Improved Properties of Optical Surfaces by Following the Example of the Moth Eye (INTECH, Croatia, 2010).
145.
145E. Yoon, R. Singh, H. Kong, B. Kim, D.-H. Kim, H. E. Jeong and K. Y. Suh, Tribol. Lett. 21, 31 (2006).
http://dx.doi.org/10.1007/s11249-005-9005-4
146.
146C. H. Choi, S. Heydarkhan-Hagvall, B. M. Wu, J. C. Dunn, R. E. Beygui and C. J. Kim, J. Biomed. Mater. Res. Part A 89A, 804 (2009).
http://dx.doi.org/10.1002/jbm.a.32101
147.
147C.-H. Choi, S. Heydarkhan-Hagvall, B. M. Wu, J. C. Y. Dunn, R. E. Beygui and C.-J. Kim, J. Biomed. Mat. Res., A 89, 804 (2008).
148.
148T. Lohmüller, Dissertation, University of Heidelberg (2008).
149.
149B. N. Mbenkum, A. S. Schneider, G. Schütz, C. Xu, G. Richter, P. A. Aken, G. Majer and J. P. Spatz, ACS Nano 4, 1805 (2010).
http://dx.doi.org/10.1021/nn900969y
http://aip.metastore.ingenta.com/content/avs/journal/bip/6/1/10.1116/1.3536839
Loading
/content/avs/journal/bip/6/1/10.1116/1.3536839
Loading

Data & Media loading...

Loading

Full text loading...

true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=avspublications.org/6/1/10.1116/1.3536839&pageURL=http://scitation.aip.org/content/avs/journal/bip/6/1/10.1116/1.3536839'
Right1,Right2,Right3,